Award Abstract # 1952402
IRES track I: International Research Experience in France on Thermal Treatment of Biomass (I-CEMITURE)

NSF Org: OISE
Office Of Internatl Science &Engineering
Recipient: GEORGIA SOUTHERN UNIVERSITY RESEARCH & SERVICE FOUNDATION INC
Initial Amendment Date: April 7, 2020
Latest Amendment Date: April 7, 2020
Award Number: 1952402
Award Instrument: Standard Grant
Program Manager: Catherine Flanley
cflanley@nsf.gov
 (703)292-2707
OISE
 Office Of Internatl Science &Engineering
O/D
 Office Of The Director
Start Date: September 1, 2020
End Date: August 31, 2024 (Estimated)
Total Intended Award Amount: $279,827.00
Total Awarded Amount to Date: $279,827.00
Funds Obligated to Date: FY 2020 = $279,827.00
History of Investigator:
  • Rafael Quirino (Principal Investigator)
    rquirino@georgiasouthern.edu
  • Karelle Aiken (Co-Principal Investigator)
Recipient Sponsored Research Office: Georgia Southern University Research and Service Foundation, Inc
261 FOREST DR
STATESBORO
GA  US  30458-6724
(912)478-5465
Sponsor Congressional District: 12
Primary Place of Performance: University of Lorraine
 FR
Primary Place of Performance
Congressional District:
Unique Entity Identifier (UEI): FL4AUYLFP7E8
Parent UEI:
NSF Program(s): IRES Track I: IRES Sites (IS)
Primary Program Source: 01002021DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 5918, 5980, 7639
Program Element Code(s): 772700
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.079

ABSTRACT

The development of sustainable technologies is crucial for the welfare of future generations in the United States and for the economic viability of manufacturers committed to sustainable production processes and materials. In order to lower the environmental impact of human activities at a national and international scale, there is a need for the development of value-added products from local biomass. It is possible to enhance some properties of biomass through the use of a controlled heat treatment in the absence of oxygen (torrefaction). Torrefaction is a thermal process to convert biomass into a coal-like material, which has better fuel characteristics than the original biomass. Torrefied biomass is more brittle, making grinding easier and less energy intensive. Heat-treated (torrefied) biomass can be more easily processed, leading to more homogeneous products for energy applications. The goal of this project is to refine a mathematical model describing the kinetics of biomass pyrolysis to more accurately determine the best treatment conditions for different biomass. Such a model will allow manufacturers to tailor heat treatment to specific biomass sources, ensuring optimal properties in the final products and providing control over the reproducibility of those properties. This project will provide US students of a diverse background and limited research and international experience, hands-on training in cutting-edge technical skills while partnering with a world-class laboratory for wood research in France. Its advanced and specialized unique facilities put it at the forefront of technology development worldwide for the heat treatment of ligno-cellulosic materials. The US students? experience will be complemented by professional development activities that will guide them in fine-tuning their communication skills (scientific writing and presentation), making strategic plans for their careers in science, and disseminating the results of their work. Ultimately, participants in this project will gain knowledge and skills necessary for the increased economic growth and technological innovation of the United States of America.

This IRES (track I) project is a ten-week annual program in which four US students conduct research projects focused on studying biomass torrefaction kinetics in a renowned laboratory at the University of Lorraine, in Epinal, France. After returning to the US, they validate their findings using local biomass at Georgia Southern University. In addition to the research component, the program includes a series of professional development activities that were proven successful by the PI and co-PI in their department?s summer undergraduate research experience program over the past several years. Therefore, this project utilizes an established, solid framework for the assessment, recruitment, and professional development of the participants. The research plan consists of four separate projects tied together by a common goal. The four proposed projects are (1) Refinement of a mathematical model describing pyrolysis of biomass by incorporation of modules associated to mineral content, reaction atmosphere, and nature of ligno-cellulosic biomass (hardwood vs softwood), (2) Data acquisition on the effect of mineral content on torrefaction of biomass, (3) Data acquisition on the effect of reaction atmosphere on torrefaction of biomass, and (4) Data acquisition on the effect of biomass nature (harwood vs softwood) on torrefaction of biomass. The data acquired in projects (2), (3), and (4) will be used in project (1) for refinement and improvement of the mathematical model. Upon continuous revision of the mathematical model over the course of the funding period, a better expression will be obtained, providing further insight about the torrefaction mechanism. Indeed, a mathematical model describing the kinetics of biomass pyrolysis will more accurately determine the best treatment conditions for different biomass, allowing manufacturers to adjust heat treatment to specific biomass sources, further ensuring property optimization in the final products while providing greater control over the process and properties? reproducibility. This can potentially eradicate two of the major impediments to widespread commercial use of biomass, namely (1) inherent variability in the results and (2) the inability to control the outcome. Overall, this project is a combination of cutting-edge research in sustainable energy and training of future U.S. workforce in the field.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Richa, Larissa and Colin, Baptiste and Pétrissans, Anélie and Wallace, Ciera and Hulette, Allen and Quirino, Rafael L. and Chen, Wei-Hsin and Pétrissans, Mathieu "Catalytic and char-promoting effects of potassium on lignocellulosic biomass torrefaction and pyrolysis" Environmental Technology & Innovation , v.31 , 2023 https://doi.org/10.1016/j.eti.2023.103193 Citation Details
Pétrissans, Anelie and Lin, Yu-Ying and Nguyen, Tram N. and Colin, Baptiste and Quirino, Rafael L. and Rios-Teixeira, Priscila and Chen, Wei-Hsin and Pétrissans, Mathieu "Influence of the heating rate on the thermodegradation during the mild pyrolysis of the wood" Wood Material Science & Engineering , v.18 , 2023 https://doi.org/10.1080/17480272.2022.2039289 Citation Details
Quirino, Rafael Lopes and Richa, Larissa and Petrissans, Anelie and Teixeira, Priscila Rios and Durrell, George and Hulette, Allen and Colin, Baptiste and Petrissans, Mathieu "Comparative Study of Atmosphere Effect on Wood Torrefaction" Fibers , v.11 , 2023 https://doi.org/10.3390/fib11030027 Citation Details

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page