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Two images of the Venus transit were taken at precisely 22:50:53 UT on June 5, 2012. One
was taken by the author from a location in Princeton NJ. The other was taken by Aram Friedman
from the top of Haleakala peak on the island of Maui in Hawaii. The two original images are
shown in Figure 1.

The two images were loaded into a popular image processing software tool called MaximDL.
The smaller image (from Haleakala) was resampled by a factor of 1.58 to make its image scale
almost the same as in the NJ image. The images were then “negated” to convert black to white
and vice versa. With this inversion, the sunspots look like bright stars against a black background
and one can ask MaximDL to align the two images using the “auto star matching” method. The
alignment produced this way by MaximDL is excellent. This alignment process is the most error-
prone part of the entire analysis. We experimented with different seemingly equivalent methods
and got final answers that varied from each other by as much as 10%.

A cropped overlay of the two aligned images is shown in Figure 2.

Using the aligned images, the displacement between the two Venus silhouettes was carefully
measured (via a Matlab program) and found to be (Az, Ay) = (19.62, 19.12) pixels and so we get

measured parallax = +/(19.62)2 + (19.12)2 px
= 27.39 px

At the time the images were taken, the Sun’s diameter was 31.57 arcminutes. Converting to
radians we get:

31.57 arcmin = 31.57 arcmin x 1 degree m_radians

60 arcmin 8 180 degrees
= 0.009183 radians



Fig. 1.— Top: Image of the Venus transit taken by the author from the top of the North Parking
Garage at Princeton University. Bottom: Image of the Venus transit taken by Aram Friedman from
the top of Mt. Haleakala.
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Using the full image, the Sun’s diameter was measured to be 2460 pixels. From this, we can
convert the measured separation of the two Venus silhouettes to radians:

0.009183 radians
2460 px
= 1.0224 x 10~* radians

= 21.09 arcseconds.

measured parallax = 27.39 px X

Using the Sun as a background reference introduces a bias since the Sun itself has a parallax.
The true Venus parallax is larger than the Sun-based measurement. To compute how much larger,
let xy denote the distance to Venus and let x5 denote the distance to the Sun. Of course, we are
assuming that we don’t know these distances in km’s but, by Keplers laws, they are known in au’s:
ry = 0.2887 au and xg = 1.0147 au (as reported by the planetarium program Cartes du Ciel).
Similarly, let 8y, and 65 denote the Venus and Sun true parallaxes, respectively. These quantities
are illustrated in Figure 3. From this diagram, we see that

Y- tan(6y) ~ Oy, and Y- tan(fs) ~ 05
Ty rs

(using the small-angle approximation for the tangent is fine since the parallax angles are tiny).
Solving for y and then eliminating y we get that

Qvl’v = QSCL’ S -
Hence, we can solve for the Sun’s parallax in terms of Venus’s parallax:

Ty
Os = Oy —.
Ts

Let 6 denote the measured parallax of Venus. It is related to 6y, and O by a simple difference:
0 =0y —bs.

Using the equation above expressing g in terms of 6y, we get

ezev(l—x—v).
rg

And, finally, we can write the true parallax, 6y, in terms of the measured parallax, 6:



Fig. 2.— The two images resized, aligned, and overlaid.

Fig. 3.— The angles 65 and 6y are very small and therefore the usual small-angle approximations
produce negligible error (for example sin(6y) ~ tan(fy) ~ 6y ). The angle «, on the other hand,
is not small and therefore the great-circle distance between NJ and HI is not approximately equal
to the perpendicular distance y.
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Plugging in our numbers, we get that the corrected parallax is

corrected parallax = 1.0224 x 10~* radians/(1 — 0.2887 au/1.0147 au)
= 1.429 x 10" radians

Using the planetarium program Celestia, it is easy to see how the Earth looked from the
perspective of the Sun at the moment the pictures were taken. (see Figure 4). It is easy then to
measure the diameter of the Earth in pixels and also the length of a line segment from Haleakela to
Princeton NJ. The former is 742 and the latter is 332. These pixel-scale measurements together with
the actual radius of the Earth in kilometers (6378.1 km) allows us to compute the perpendicular
distance between Haleakela and NJ in kilometers:

332
P dicular dist = — 1 km = 6k
erpendicular distance 742/26378 5707.6 km

We are finally in a position to compute the distance to Venus. We just need to divide the

perpendicular distance by the corrected parallax:

Distance to Venus = 6007 km/1.429 x 10~* radians
= 42.04 million km

And from this we compute the distance to the Sun:

lau = 42.04 million km x 1 au/0.2887 au
= 145.6 million km

Of course, the astronomical unit is known to be 149.598 million km. Our answer is within
about 3% of the correct answer.

Final Remark. Using the 2004 transit event, the European Southern Observatory sponsored
a world-wide data gathering campaign and, using the data, got that

1 au = 149, 608, 708 = 11835 km.

That project involved 4550 contact timings from 1510 registered observers. The project is summa-
rized here: http://www.eso.org/public/outreach/eduoft/vt-2004/auresults/.
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Fig. 4.— Earth as seen from Venus at the time the images were taken (thank you Celestia).
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