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Millimeter-wave frequencies offer abundant spectrum and high data rates, but their use

comes at the cost of a severe propagation loss. The loss can be alleviated by establishing

directional communication links with high beamforming gains between the base stations and

users and by using dense network deployments.

Beam training is a procedure that reveals the best beam steering directions in a wireless

channel. When performed with conventional phased arrays that have many antenna ele-

ments, beam training imposes a large overhead. In this work, we introduce true-time-delay

array architectures as promising alternatives for phased arrays to solve the overhead prob-

lem. Compared to phased arrays, true-time-delay arrays can synthesize frequency-dependent

beams and thus probe all angular directions simultaneously using different signal frequencies.

We leverage this property to develop and analyze low-complexity digital signal processing

algorithms for fast and accurate millimeter-wave beam training.

Unlike beam training, channel estimation has the goal to estimate all parameters of a

sparse millimeter-wave channel. We exploit the channel sparsity and frequency-dependent

ii



beams of true-time-delay arrays to develop a frequency-domain compressive sensing based

algorithm for channel estimation. We also analyze the performance of the developed algo-

rithm in the presence of practical hardware impairments and we derive the lower bounds on

the variances of channel parameter estimators.

In dense millimeter-wave networks with a small inter-site distance and a large number

of users, directional beams can cause significant interference and prevent data-hungry users

from satisfying their rate requirements. The user experience and the overall network per-

formance can be optimized through coordinated user association and beam scheduling on a

network level. Given the channel estimates between different pairs of base stations and users,

we develop and analyze a new multi-step optimization framework for joint user association

and beam scheduling. The main goal of the framework is to maximize the number of users

with satisfied rate requirements while simultaneously suppressing the inter- and intra-cell

interference. Since the framework includes NP-hard optimization problems, we propose an

algorithm that attains a sub-optimal solution in polynomial-time.
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CHAPTER 1

Introduction

1.1 Motivation

Due to the shortage of sub-6 GHz spectrum, millimeter-wave (mmW) communication net-

works gained an important role in the deployment of cellular systems. Abundant spec-

trum at mmW frequencies with the total of 3.85 GHz bandwidth [FCC16] at the lower

mmW band (28, 37, and 39 GHz) offers peak rates in the order of several gigabits per

second [GTC14]. Future generations of mmW networks will operate in the upper mmW fre-

quency band where more than 10 GHz of bandwidth can be used to meet the ever increasing

demands [YXX19,ZXM19].

Large available bandwidth, however, comes at the cost of less favorable propagation

conditions. Recent measurement campaigns showed that mmW signals experience severe

propagation loss in both the lower and upper mmW bands [ALS14]. For this reason, mmW

channels are sparse, i.e., only a few multipath components reach the receiver. Due to a small

wavelength at mmW frequencies, the base station (BS) and user equipment (UE) can be

equipped with large antenna arrays and establish a directional link with high beamforming

gain to compensate for the propagation loss. Unlike in sub-6 GHz acMIMO communication

with fully digital arrays where each antenna element has a dedicated radio frequency (RF)

chain, large mmW arrays have analog architecture with phase shifters (PS) and a single RF

chain, or hybrid analog-digital architecture with a few RF chains to make chipsets power

and cost efficient. Consequently, the majority of channel probing procedures required to
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establish a directional link between the BS and UE have been developed for PS-based analog

and hybrid arrays. The overhead associated with these procedures is directly proportional

to the number of antenna elements in the array and inversely proportional to the number

of beams that can be steered at once, i.e., the number of RF chains. For this reason,

previously developed procedures for PS-based arrays with a few RF chains experience an

overhead bottleneck when massive antenna arrays are used. Therefore, future mmW systems,

especially those deployed in the upper mmW band, will require fundamental rethinking of

array architectures and corresponding channel probing procedures to eliminate the problem

of high overhead.

Another way to compensate for the propagation loss at mmW frequencies and improve

the link budget is by using a much denser network deployment, where the inter-site distance

is in the order of a hundred meters [BIB15]. Due to the use of highly directional beams,

it is widely accepted that mmW communication is noise-limited rather than interference-

limited. However, with further densification of mmW networks, the directional inter- and

intra-cell interference cannot be neglected [ABK17]. In particular, the main-lobe of highly

directional beams can cause significant interference and prevent data-hungry UEs from sat-

isfying their data rate requirements. Based on this, two important questions arise in dense

mmW networks: 1) Since a UE can be relatively close to multiple BSs, which BS should it be

associated with? 2) How can the directional interference be avoided or suppressed? In the

current mmW networks, these questions are answered individually by the UEs and BSs. For

example, each UE can select the BS it wants to be associated with based on the measured

quality of communication links. On the other hand, each BS can optimize its beamforming

vectors to suppress the intra-cell interference. While this approach is simple, it can lead to

a poor network performance overall. Specifically, user association is not balanced as many

UEs can select the same BS. Beam scheduling at that BS can experience significant de-

lays, while the beams at other BSs remain under-utilized. Additionally, simple optimization

of BS beams does not suppress the inter-cell interference in the network. Actual network
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performance improvements can be ensured through optimization frameworks that consider

multiple BSs and UEs at the same time [LWC16]. If designed properly, optimization frame-

works can enable both a balanced user association and a coordinated suppression of the

inter- and intra-cell interference in the network.

1.2 Challenges and Objectives

1.2.1 Estimation of Best Beam Steering Directions

One of the most important physical-layer procedures in mmW networks is beam training,

which enables the BS and UE to establish a directional link by iteratively searching for the

best beam steering directions, i.e., the angle of departure (AoD) and angle of arrival (AoA)

of the most dominant propagation path [HGR16]. As the number of antenna elements at

the BSs and UEs increase, the beam widths get narrower and the number of candidate beam

pairs that need to be checked increases significantly. Although beam training implementation

is simple, the overhead created by the procedure becomes a bottleneck when BSs and UEs

have large arrays. This problem cannot be solved with analog and hybrid PS-based arrays

due to their low flexibility and inability to probe a large number of beams simultaneously.

On the other hand, true-time-delay (TTD) arrays can leverage their frequency-dependent

beams to probe all angular directions simultaneously using different signal frequencies. Our

objective is to design and analyze digital signal processing (DSP) algorithms for fast mmW

beam training using analog and hybrid TTD arrays.

1.2.2 Estimation of Sparse Millimeter-Wave Channel

Channel estimation is a procedure for acquiring the full knowledge of a wireless channel, and

it includes the estimation of the AoDs, AoAs, and channel gains of all multipath components

[HGR16]. Having the full channel knowledge provides a series of benefits, including the
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ability to optimize the BS and UE beamforming vectors, boost the data rate through spatial

multiplexing, perform optimal power allocation, determine the backup links to be used in

the case of a link failure, and others. The majority of the existing algorithms were developed

for analog and hybrid PS-based arrays. However, these arrays experience a similar problem

like in beam training - their inability to probe many angular directions simultaneously leads

to a high required overhead. Our objective is to exploit the sparsity of mmW channels and

frequency-dependent beams of TTD arrays to design a high-accuracy channel estimation

DSP algorithm that requires a low overhead. We also want to understand the impact of

practical hardware impairments in TTD arrays on the designed algorithm.

1.2.3 Network Performance Optimization

The UE uses the acquired channel state information in the process of cell selection to decide

which BS it wants to be associated with [3GP19a]. Although the cell selection is straight-

forward and already used in practice, it is an inefficient way of associating the UEs when

the overall network performance needs to be optimized. An alternative way to perform user

association and beam scheduling is through an optimization framework. A properly designed

optimization framework aims to maximize a specific network utility function, while consider-

ing important service requirements, properties of directional communication, and features of

mmW transceivers. However, the existing frameworks are often mathematically too complex

and not comprehensive enough. For example, the utility function is commonly non-convex

and focused on maximization of the network sum rate, while the set of constraints do not

necessarily suppress the interference and capture important properties of mmW communi-

cation. In addition, with maximization of the network sum rate, available serving beams

are scheduled to the UEs with good channels, while other UEs’ rate requirements are often

not satisfied. Our objective is to design and mathematically formulate a less complex, yet

more comprehensive framework with a different utility function and a set of constraints that

consider important properties of mmW communication.
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1.3 Contributions

The contributions of the dissertation are summarized as follows.

1.3.1 Beam Training using True-Time-Delay Arrays

We introduce TTD array architectures for fast mmW beam training, including analog, hybrid

sub-array based, and fully connected hybrid TTD arrays. The architectures are compared

in terms of the beam training hardware requirements, dependency of beam training on

the basic system parameters and TTD hardware constraints, and robustness to hardware

impairments and quantization errors in analog-to-digital converters (ADC). In addition, we

propose a benchmark emulation of frequency-dependent TTD-based beam training using a

fully digital array to analyze the advantages and disadvantages of TTD array architectures

for mmW beam training. We develop a high-accuracy DSP algorithm for UE beam training

that requires a single wideband symbol. Using numerical simulations, we show that the

algorithm achieves a sub-degree angle estimation accuracy and that it is highly robust to

hardware impairments in TTD arrays. Further, we extend the idea of beam training with

frequency-dependent beams to the joint beam training between the BS and UE. We analyze

the beam pair misalignment probability in the fast joint beam training and we show that the

probability is at least as low as in the conventional exhaustive beam sweeping (EBS) with

PS-based arrays. The joint beam training is evaluated in realistic frequency-selective mmW

channels and it is shown that it outperforms the EBS while requiring a lower overhead.

1.3.2 Channel Estimation using True-Time-Delay Arrays

We develop a compressive sensing (CS) based DSP algorithm to estimate sparse mmW

channels using an analog TTD array. The algorithm is designed in the frequency domain

and it is based on per-sub-band processing that exploits frequency-dependent beams of the

TTD array and reduces the complexity compared to the state-of-the-art. Assuming antenna
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arrays without hardware errors, the proposed DSP algorithm is compared with related state-

of-the-art approaches designed for PS-based antenna arrays in terms of the required number

of training frames, channel estimation accuracy, and computational complexity. The results

indicate that the algorithm has a better accuracy, lower overhead, and lower complexity than

the state-of-the-art. The proposed algorithm is also evaluated in the presence of impairments

in the analog TTD array and the results reveal notable robustness to hardware errors. We

extended our analysis of the impact of hardware impairments by linearizing the received

signal model and deriving the Cramér-Rao lower bound (CRLB) for the parameters of line-

of-sight (LoS) mmW channels, including the AoD, AoA, and phase of the complex channel

gain. We propose a gradient descent based refinement of channel parameters to improve the

estimation accuracy and close the gap between the algorithm performance and the derived

CRLBs.

1.3.3 User Association and Low-Interference Beam Scheduling

We propose a new optimization framework where user association and low-interference beam

scheduling are performed jointly in a centralized sub-network. The framework consists of

three sequential steps: Step 1 - maximization of the number of UEs with fully satisfied

rate requirements; Step 2 - maximization of the number of UEs with partially satisfied

rate requirements using the remaining serving beams; Step 3 - design of hybrid precoders

and combiners, followed by power allocation on a sub-network level to boost the rates of

partially satisfied UEs. We mathematically formulate linear optimization problems in all

three steps. This includes the design of multi-criterion objective functions using scalarization

and the design of constraints that consider UEs’ rate requirements and suppress the inter-

and intra-cell interference. We explain that the optimization problems in Step 1 and Step 2

are NP-hard, and then we design a heuristic algorithm based on relaxation, rounding, and

resource pruning to obtain sub-optimal solutions. We also analyze the complexity of the

proposed algorithm and show that the solutions are obtained in polynomial time. Using
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realistic mmW channels where co-located UEs can experience significant interference, we

evaluate the impact of the interference management on the average signal-to-interference-

plus-noise ratio (SINR) per associated link. We also compare the proposed optimization

framework with existing baseline approaches, including the naive greedy association and

the maximum sum rate association. The comparison is done in terms of average number

of UEs with satisfied rate requirements, network sum rate, and transmit power usage per

BS. The results reveal the advantages of the proposed framework over the existing baseline

approaches.

1.4 Thesis Organization

The rest of the dissertation is organized as follows

• Chapter 2: We present TTD array architectures, DSP algorithms, and analysis for fast

mmW beam training. This chapter is an extension of our previous publication [BYL21].

• Chapter 3: We present the CS-based DSP algorithm and analysis for TTD-based esti-

mation of mmW channels. This chapter is based on our previous publication [BC22].

• Chapter 4: We present the three-step optimization framework for joint user association

and low-interference beam scheduling in mmW networks. This chapter is an extension

of our previous publication [BSC22a].

• Chapter 5: We summarize the research contributions and outline future research di-

rections.
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CHAPTER 2

Beam Training using True-Time-Delay Arrays

2.1 Introduction

Abundance of spectrum at mmW frequencies is seen as the key enabler of high data rates

in the fifth generation (5G) of cellular systems [ABC14]. However, communication at mmW

frequencies is challenged by severe propagation loss [RXM17]. To compensate for this loss,

the BS and UE rely on directional communication with large antenna arrays that can provide

high beamforming gains. A common way to establish a directional link between the BS and

UE without explicit channel estimation is through beam training [HGR16], a procedure

that identifies the dominant AoD and AoA, i.e., the best pair of steering directions, in

the wireless multipath channel. Apart from aligning the beams for data communication,

knowledge of the AoA and AoD is of utmost importance for other applications in practical

mmW systems, including interference nulling and localization [WML16]. With large antenna

arrays and narrow beams at the BS and UE, finding the optimal beam pair, but keeping

the training overhead and computational complexity low, is a challenging task which has

recently attracted significant attention from researchers.

2.2 Prior Work on mmW Beam Training

Early work on 5G mmW communications usually assumed that the BS and UE have power-

efficient analog phased arrays with a single RF chain. Phased arrays have adjustable PSs

in all antenna branches, which allows them to coherently steer or combine the signal from
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a desired direction. However, since there is a single RF chain, only one steering/combining

beam can be synthesized at the time, which limits the flexibility of phased arrays. For this

reason, the existing beam training approaches for phased arrays include different variations

of the EBS [HPR15, JPY15,LLZ20,CM21]. In the EBS, the BS and UE sequentially check

all possible beam pairs to identify the one with the highest received signal power, which

corresponds to the dominant AoD and AoA. Due to its simple implementation, the variations

of the EBS have been proposed and used in practical communication systems [iee21]. The

main problem of sweeping is a large training overhead since the required number of training

symbols scales linearly with the number of antennas.

Previous work that address the problem of large beam training overhead can be roughly

divided into two groups. The first group of works intends to leverage DSP techniques to

reduce the required number of training symbols when the BS and UE are equipped with

phased arrays. Specifically, several algorithms that exploit the sparsity of mmW channel and

treat beam training as a compressive sensing problem have been proposed recently [ZLC20,

YC19,Baj19,RMZ17]. It has been shown that the overhead of the compressive algorithms

scales logarithmically with the number of antennas [RMZ17]. The second group of works

aims to speed up channel probing by using different array architectures [DKS14, BHR14,

BHM16,AEL14,DPW17,NZL17,VAG17,GYS20,JSR20,RJ20,YBC19,BYG20,BYL21]. Fully

digital array architectures, where each antenna has a dedicated RF chain, offer the highest

flexibility in channel probing. Having the signal samples in all antenna branches allows

these arrays to probe numerous angular directions simultaneously through DSP for fast angle

estimation [DKS14,BHR14,BHM16]. While digital architecture is appealing for BSs [Yan19],

it may not be suitable for UEs due to high power consumption. Power-efficient hybrid

array with multiple digitally connected phased arrays is another way to enable simultaneous

probing of the channel [WFW21]. Further, DSP in hybrid arrays can be leveraged for the

design of training codebooks with adaptive sector beams for hierarchical AoD and AoA

estimation, which can reduce the beam training overhead [AEL14, DPW17, NZL17]. In
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hierarchical approaches, information of the AoD/AoA is iteratively refined using narrower

probing sectors in each iteration. However, the initial sector beams have more power in

sidelobes and thus probability of early sector misdetection is high [DKS14]. Additionally, the

required feedback about the chosen sector in each iteration negatively affects the overhead.

Besides hierarchical approaches, various compressive algorithms were proposed for hybrid

arrays [VAG17], but mainly in the context of channel estimation.

In an effort to further reduce the required overhead, recent work proposed the use of

frequency-dependent beam steering in mmW beam training [GYS20, JSR20,RJ20,YBC19,

BYG20,BYL21]. In [GYS20], the authors investigated fast beam training with a leaky wave

antenna, which can probe all angular directions simultaneously by using different frequency

components of the signal. Similarly, recently reemerged TTD arrays can facilitate beam

training based on frequency-to-angle mapping [JSR20,RJ20,YBC19]. Compared to phased

arrays, TTD arrays have delay elements along with PSs in all antenna branches, which allow

them to synthesize frequency-dependent beams. Early implementations of TTD arrays relied

on delay lines in all antenna branches [CH10], but this approach suffered from low scalability

in terms of required area and power efficiency when the array size becomes large. Further,

limited delay range at RF is insufficient to achieve frequency dispersive beam training as

proposed in this work. Recent advancement in TTD arrays with baseband delay elements

and large delay range-to-resolution ratios [GSR19,GPB20], improved the scalability and thus

enabled the realization of fast beam training schemes with large arrays.

2.2.1 Contributions

In this chapter, we introduce and analyze TTD array architectures and DSP algorithms for

fast beam training in wideband mmW channels. The contributions of this chapter can be

summarized as follows:

• We introduce TTD architectures, including analog, hybrid sub-array based, and fully
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connected hybrid architectures, for fast mmW beam training with frequency-dependent

beams. We also propose a benchmark emulation of frequency-dependent TTD-based

beam training using a fully digital array and time-domain DSP, to analyze the advan-

tages and disadvantages of TTD array architectures for beam training.

• We develop a TTD beam training codebook and a DSP algorithm for a single-symbol

UE beam training with a high angle estimation accuracy.

• We perform a thorough comparison of analog TTD, hybrid sub-array based TTD, and

benchmark fully digital arrays in terms of the dependency of UE beam training on the

basic system parameters and TTD hardware constraints, and robustness to hardware

impairments and quantization errors in ADC.

• We develop codebooks and a DSP algorithm for joint beam training between the BS

and UE using frequency-dependent beams.

• We analyze the beam pair misalignment probability in joint beam training in the

presence of Gaussian noise. The misalignment probability in the EBS is included as

the benchmark.

• The performance of the proposed joint beam training algorithm is evaluated in realistic

wideband mmW channels generated in Quadriga [JRB19]. The results show that the

proposed algorithm outperforms the EBS while requiring a lower overhead.

2.2.2 Organization and Notation

The rest of the chapter is organized as follows. In Sec. 2.3, we introduce the three TTD

architectures and benchmark fully digital array. Sec. 2.4 introduces a wideband system

model. Sec. 2.5 describes the design of a beam training codebook and a DSP algorithm design

for the UE beam training. In Sec. 2.6, we compare the considered TTD array architectures

when they are used for UE beam training. In Sec. 2.7, we present the design of a joint
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beam training between the BS and UE using frequency-dependent beams. The comparison

between the designed joint beam training and EBS is presented in Sec. 2.8. In Sec 2.9, joint

beam training is evaluated in realistic wideband mmW channels. Sec. 2.10 summarizes the

conclusions and ideas for the future work.

Scalars, vectors, and matrices are denoted by non-bold, bold lower-case, and bold upper-

case letters, respectively. The n-th element of a is denoted by [a]n. Hermitian transpose is

denoted by (.)H.

2.3 TTD Array Architectures for Beam Training

The realization and performance of TTD beam training schemes heavily depends on the

underlying TTD hardware. The design of a fast high performance beam training scheme

imposes a challenging delay range requirement on TTD circuits, which raises the question of

a beam-training-efficient TTD array architecture. Here, the efficiency depends the number

of symbols used in beam training, angle estimation accuracy, and array power consumption.

To address this question, we propose three uniform linear array architectures with baseband

TTD elements, including analog, hybrid sub-array based, and fully connected hybrid arrays.

Further, we extensively compare the efficiency of the analog and hybrid sub-array based TTD

arrays. A fully digital array architecture is included in the comparison as the benchmark. In

particular, we use it to emulate TTD-based beam training and thus highlight the advantages

and disadvantages of TTD arrays. All considered array architectures are described in the

reminder of this section.

An analog uniform linear TTD array with a single RF chain and NR antennas is presented

in Fig. 2.1. The n-th antenna branch has an analog PS with the phase tap ϕA,n = (n−1)∆ϕ

and an analog baseband TTD element with the delay tap τA,n = (n− 1)∆τ , where ∆ϕ and

∆τ represent the phase and delay spacing between neighboring branches, respectively. Note

that the PSs in the analog array can be implemented in the RF path, local oscillator path, or

12



ADC

 

  

 

DSP

  

AoA est.

     

Signal

ML estimate
of powers

DFT

     

Analog combiner:

     
      

     

     

     

    

     

    

      

     

Fixed analog phases and delays

- CP

  

       

  

    

Figure 2.1: Architecture of analog TTD array with uniform delay spacing ∆τ and phase

spacing ∆ϕ between antennas. The design of combiners and DSP algorithm is explained in

Sec. 2.5.

baseband domain [PT12]. From mathematical perspective, these different implementations

introduce the same phase taps in beam training algorithm design. Here we assume that

the PSs are implemented in the baseband, as depicted in Fig. 2.1. In practice, the phase

taps ϕA,n, n = 1, ..., NR, can be distorted due to the errors in PSs, local oscillators, imbalance

between in-phase and quadrature samples, or other hardware imperfections. Similarly, errors

in TTD elements can distort the delay taps τA,n, n = 1, ..., NR. In all antenna branches,

we model the time-invariant distorted taps as independent zero-mean Gaussian random

variables ϕ̃A,n ∼ N (ϕA,n, σ
2
P) and τ̃A,n ∼ N (τA,n, σ

2
T), respectively. For a specific delay

spacing ∆τ , TTD frequency-dependent antenna weight vector results in a fixed beam training

codebook of pencil beams, where different frequency components of the signal are hard-

coded in different angular directions. The frequency-flat PSs increase the flexibility by

enabling codebook rotations and different frequency-to-angle mapping. The maximum delay

in the NR-th antenna branch is τA,NR
= (NR − 1)∆τ , which becomes an implementation
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Figure 2.2: Architecture of hybrid sub-array based TTD array with uniform delay spacing

∆τ and phase spacing ∆ϕ between antennas. The design of combiners and DSP algorithm

is explained in Sec. 2.5.

bottleneck for large antenna arrays. The state-of-the-art TTD delay range is in the order

of 15 ns [GSR19], which can be insufficient for wideband beam training with a moderate

number of antenna elements NR, e.g., NR = 32, as previously discussed in [BYG20].

To alleviate the delay range requirement and improve the scalability of analog TTD

arrays, we introduce a hybrid analog-digital architecture with NH sub-arrays, each controlled

by one distinct RF chain, as illustrated in Fig. 2.2. The hybrid array uses a combination of

analog and digital signal delaying, where first all the sub-arrays of Nr antennas introduce

the same delays τA,n′ = (n′ − 1)∆τ, n′ = 1, ..., Nr, in the analog domain. The relative

delay difference among antennas is compensated in the digital domain by introducing the

fixed digital taps τD,h = (h−1)Nr∆τ, h = 1, ..., NH, i.e., digital delays fsτD,h, where fs is the

sampling frequency. As in the analog TTD array, the distorted phase taps ϕ̃A,n, n = 1, ..., NR,

and delay taps τ̃A,n, n = 1, ..., NR, are modeled as independent Gaussian random variables.

We also introduce a fully connected hybrid TTD architecture illustrated in Fig. 2.3. As in

the sub-array based architecture, the fully connected architecture has a delay element in each

antenna branch. However, there are two notable differences between the two architectures.
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Figure 2.3: Architecture of fully connected hybrid TTD array with uniform delay spacing

∆τ and phase spacing ∆ϕ between antennas in each RF chain. This architecture is used

later in joint beam training in Sec. 2.7.

Firstly, the fully connected architecture cannot split the signal delaying between the analog

and digital domains. Thus, the delay taps are designed as in the analog TTD architecture,

i.e., τA,n = (n − 1)∆τ, ∀n. Secondly, each RF chain in the fully connected architecture

controls all NR antennas using NR PSs. Consequently, the combined signal in each RF

chain has the full beamforming gain. In addition, phase shifters allow the fully connected

architecture to rotate frequency-dependent codebooks and achieve different frequency-to-

angle mapping in NH RF chains. The rotations increase the codebook diversity, which

improves the beam training performance, as we discuss in more details in Sec. 2.7. Assuming

uniformly spaced phase taps in each RF chain, the phase tap in the n-th antenna and r-th

RF chain is mathematically defined as ϕA,r,n = (r − 1)(n− 1)∆ϕ.

A fully digital array, used as the benchmark, is illustrated in Fig. 2.4. The digital

array can emulate a TTD array through DSP by using the fixed digital taps τD,n = (n −

1)∆τ, n = 1, ..., NR, i.e., digital delays fsτD,n in the corresponding antenna branches. We

assume phase-only beamforming without magnitude control in order to create a codebook

of pencil beams as with both analog and hybrid TTD arrays. The ability to control the
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Figure 2.4: Architecture of the benchmark fully digital array that is used to emulate

TTD-based beam training by introducing digital delays. The design of combiners and DSP

algorithm is explained in Sec. 2.5.

digital phases ϕD,n, n = 1, ..., NR, in DSP, allows the signal frequency components to be

independently steered/combined in any angular direction, which provides high flexibility

in the beam training design. The digital array does not have the analog PSs and TTD

elements before the ADCs, and it is assumed to be insensitive to hardware errors. However,

each antenna element has a dedicated RF chain, which significantly affects the array power

efficiency, as discussed in details in [BYL21].

In the next section, we explain how ∆τ and ∆ϕ are set up in the analog, hybrid sub-

array based and digital architectures to obtain a beam training codebook robust to frequency-

selective channels. We also introduce a DSP algorithm that exploits this codebook. Based on

the designed ∆τ , Sec. 2.6 discusses the dependency of the UE beam training performance on

the basic system parameters, TTD hardware constraints, and TTD hardware impairments.

2.4 System Model for UE Beam Training

We consider downlink beam training between the BS and UE, where the cyclic prefix (CP)

based Orthogonal Frequency Division Multiplexing (OFDM) waveform is used as a training
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Figure 2.5: Beam training in clustered frequency-selective multipath channel: (a) An exam-

ple of frequency-selective channel with two multipath clusters. Frequency-selectivity comes

from intra- and inter-cluster delay spreads. The first cluster is dominant and its AoA needs

to be estimated. (b) Channel observation of a phased array when only one symbol is used.

Beam sweeping is necessary to cover all angles in the range (−π/2, π/2). (c) Channel obser-

vation of a TTD array when only one symbol is used. Frequency components (subcarriers)

are mapped into different angles to simultaneously probe the range (−π/2, π/2). The an-

gle estimation may fail in frequency-selective channels. (d) Enhanced TTD codebook with

frequency diversity order R = 2.

symbol. The carrier frequency, bandwidth, and number of subcarriers are denoted as fc, BW,

and Mtot, respectively. The power-normalized training symbol uses M subcarriers from the

predefined set M, all loaded with binary phase shift keying (BPSK) modulated symbols.

Both the BS and UE have half-wavelength spaced uniform linear arrays with NT and NR

antennas, respectively.

2.4.1 Channel Model

we consider a mmW channel with L multipath clusters well-separated in angular domain.

Due to the inter- and intra-cluster delay spread [3GP19b,JRB14], we assume that the channel

is frequency-selective. The channel matrix H[m] ∈ CNR×NT at the m-th subcarrier can be
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expressed as

H[m] =
L∑
l=1

gl[m]aR(θ
(R)
l )aH

T(θ
(T)
l ), (2.1)

where θ
(R)
l and θ

(T)
l are the AoA and AoD of the l-th cluster, defined with respect to

the local coordinate systems at the UE and BS, respectively. We assume the array re-

sponses are frequency flat, i.e., [aR(θ)]n = N
−1/2
R exp(−j(n− 1)π sin(θ)), n = 1, ..., NR and

[aT(θ)]n = N
−1/2
T exp(−j(n− 1)π sin (θ)), n = 1, ..., NT. The complex gains at all subcarriers

are modeled as complex Gaussian random variables, i.e., gl[m] ∼ CN (0, σ2
l ) , ∀l,m. The

gains gl[m], ∀l,m, are assumed to be independent across L multipath clusters and all well-

separated subcarriers, e.g., separated by a coherence bandwidth, which is in the order of 10

MHz in mmW channels. The frequency-domain channel model in (2.1) can be approximated

as [HGR16]

H[m] ≈ ARΛ[m]AH
T, (2.2)

where AR ∈ CNR×Q and AT ∈ CNT×Q contain Q array responses aR(ξq) and aT(ξq) that

correspond to Q uniformly spaced angles ξq, q = 1, ..., Q, in the range (−π/2, π/2). The

square matrix Λ[k] ∈ CQ×Q has only L non-zero elements that correspond to the gains

gl[m], ∀l. Commonly, Q≫ L and the approximation error in (2.2) can be neglected.

2.4.2 Received Signal Model in UE Beam Training

In general, AoDs evolve slower than AoAs over time in mmW channels. Since BSs have

fixed orientation of antenna arrays, the evolution of AoDs is determined by the gradual

birth and death of channel clusters [JRB14, JRB19]. On the other hand, UEs are prone

to swift rotations in antenna orientations, which can lead to significant changes of AoAs,

even in low mobility environments [JRB14,JRB19]. Additionally, mmW BSs are likely to be

equipped with fully digital antenna arrays [Yan19], which enable the dominant AoD to be

estimated using a single symbol by probing all angular directions at once [BHM16]. Thus,

here we assume that the slowly-changing AoD θ(T) at the BS has already been estimated
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and used to design a fixed frequency-flat beam defined by the precoder vector v ∈ CNT .

The real challenge arises at the UE side where the dynamic AoA changes require frequent

beam training to be performed in a fast and power-efficient manner. We propose the UE to

be equipped with a TTD array and exploit its frequency-dependent beamforming to achieve

a single-shot estimation of the AoA θ(R). Therefore, the received signal y[m] at the m-th

subcarrier of the used OFDM symbol is

y[m] = wH[m]H[k]vs[m] +wH[m]n[m], m ∈M, (2.3)

where s[m] is a BPSK symbol and n ∼ CN (0, σ2
NINR

) is white Gaussian noise. The UE

TTD combiner w[m] ∈ CNR of the m-th subcarrier can be decomposed as an element-wise

Hadamard product of the analog combinerwA[m] ∈ CNR and digital combinerwD[m] ∈ CNR ,

i.e., w[m] = wA[m] ⊙ wD[m] = [[wA[m]]1 [wD[m]]1 , ..., [wA[m]]NR
[wD[m]]NR

]T. Both the

analog and digital combiners depend on the underlying array architecture. In an analog

TTD array, wD[m] = 1NR
, i.e., w[m] = wA[m], since there is no digital combining and both

the phases ϕA,n, ∀n, and delays τA,n, ∀n, are introduced in the analog domain. On the other

hand, with a fully digital array, wA[m] = 1NR
, i.e., w[m] = wD[m], as the array is insensitive

to hardware impairments and the signal is combined in the digital domain after applying the

phases ϕD,n, ∀n, and delays τD,n, ∀n. In general, the n-th elements of wA[m] and wD[m]

are given as

[wA[m]]n = exp
[
−j
(
2π(fm − fc)τ̃A,n + ϕ̃A,n

)]
(2.4)

[wD[m]]n = exp [−j (2π(fm − fc)τD,n + ϕD,n)] (2.5)

where fm = fc−BW/2+ (m− 1)BW/(Mtot− 1). Note that there is no magnitude, but only

phase and delay control in (2.5), since the digital array is used here to emulate TTD-based

beam training with pencil beams.

The expressions (2.4) and (2.5) indicate that the beam pointing direction depends on the

subcarrier frequency, phases, and delays. With a proper configuration of the phase and delay
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Figure 2.6: Illustration of OFDM power allocation in (a) conventional beam training and

(b) TTD beam training.

taps in the analog and/or digital domain, it is possible to set up a codebook of combiners

that covers all angular directions, as we discuss in the next section.

2.4.3 SNR and PAPR in OFDM-based Beam Training with TTD Arrays

The proposed beam training with frequency-dependent beams uses an OFDM based wave-

form where only a subset ofM out ofMtot (M < Mtot) subcarriers is loaded at the BS. This

allows the transmit signal power to be allocated to a lower number of subcarriers, which

can increase the signal-to-noise ratio (SNR) per subcarrier compared to that in conventional

beam training, as illustrated in Fig. 2.6. Specifically, when the total transmit power PT is

divided among M subcarriers, the SNR per subcarrier is given by the following expression

SNRsc =
20 log10 (NT) 20 log10 (NR)λ

2

(4πd)2
PT

∆BWN0M
, (2.6)

assuming a free-space path loss model. The terms 20 log10 (NT), 20 log10 (NR), λ, and d

represent the transmit beamforming gain, receive beamforming gain, wavelength, and dis-

tance between the BS and UE. Power spectral density of the noise is denoted as N0, while

∆BW = BW/(Mtot − 1) represents the subcarrier spacing. Note that the SNR per subcar-

rier is Mtot/M times larger than with a fully loaded OFDM waveform. Since the proposed

DSP algorithm considers only M loaded subcarriers with high SNR, angle estimation is not
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Figure 2.7: PAPR comparison between proposed and fully loaded OFDM waveforms, as-

suming BPSK or QPSK symbols.

noise-limited. Further, due to a lower number of used subcarriers, the proposed OFDM

waveform for TTD beam training results in a more than 2dB lower peak-to-average power

ratio (PAPR) than a fully loaded OFDM waveform, as presented in Fig. 2.7, where we as-

sumed the same simulation parameters as in the previous subsection. We used a cyclic prefix

of 128 samples and assumed that subcarriers are loaded either with BPSK or quadrature

phase shift keying (QPSK) symbols.
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2.5 Proposed Beam Training for UEs

2.5.1 Codebook Design for TTD-based UE Beam Training

As illustrated in Fig. 2.5(b), conventional phased arrays cannot estimate the AoA of the

dominant cluster with one training symbol, and thus they require exhaustive beam sweeping.

On the other hand, we have demonstrated in [YBC19] thatD spatial directions in the angular

range (−π/2, π/2) can be simultaneously probed using an analog TTD array and a single

OFDM symbol by mapping one subcarrier per direction, as illustrated in Fig. 2.5(c). We

have shown that this can be achieved by setting the delay spacing to be ∆τ = 1/BW.

The resulting codebook is, however, sensitive to frequency-selective channels since certain

subcarriers can experience deep fades and thus miss to detect the incoming signal. The

codebook can be enhanced by increasing its frequency diversity order R, i.e., by mapping R

distinct subcarriers in each probed direction [BYG20]. Note that this enhancement requires

M = DR (M ≤Mtot) subcarriers to be used in beam training. The benefit of the enhanced

codebook is illustrated in Fig. 2.5(d) for R = 2, where two subcarriers detect the dominant

cluster. To increase the diversity, we define D distinct setsMd, 1 ≤ d ≤ D, of R subcarriers,

where each set is associated with a different direction d, 1 ≤ d ≤ D. Mathematically, the R

subcarriers from the setMd have the same combiner fd, i.e., w[m] = fd, ∀m ∈ Md, where

the n-th element of fd is defined as

[fd]n = exp[−j2π(n− 1)(d− 1−D/2)/D], d ≤ D. (2.7)

The subcarriers in Md, however, should experience different channels, and thus we choose

them uniformly across the bandwidth. The subcarriers in Md see different channels if the

distance between them is larger than the coherence bandwidth. This codebook can be created

for an analog TTD array by setting the n-th phase and delay taps as follows

ϕA,n = (n− 1)[π sin(θs)− ψ], (2.8)

τA,n = (n− 1)R/BW, (2.9)
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Normalized BF gain [dB]

Figure 2.8: An example of robust TTD codebook for NR = 16, D = 16, and R = 4. All

D = 16 directions are probed simultaneously. Direction d, 1 ≤ d ≤ D, is associated with

set of subcarriersMd and combiner fd.

where ψ = mod(2πR(f1−fc)/BW+π, 2π)−π, and mod() is the modulo operator. To ensure

that w[m] = fd,∀m ∈Md, for d = 1, ..., D, we set the steering angle θs to be θs = −π/2. An

example of the resulting codebook with NR = 16, D = 16, and R = 4 is provided in Fig. 2.8.

Different values of θs in (2.8) result in different codebook rotations, while the changes in

(2.9) enable the adjustment of the range of probed angles. Note that the same enhanced

codebook can be created for the hybrid sub-array based TTD array or fully digital array

without the need to implement a fractional ADC sampling since ∆τ is proportional to the

Nyquist sampling period, i.e., ∆τ = R/BW. Analog and digital delay taps of the hybrid sub-

array based TTD array introduced in Sec. 2.3, can be expressed with respect to the indices

of all antenna elements in the array n = 1, .., NR, as τA,n = (n− 1− ⌊(n− 1)/Nr⌋Nr)∆τ ,

and τD,n = ⌊(n− 1)/Nr⌋Nr∆τ , respectively. The operator ⌊x⌋ rounds x to the nearest lower

integer. Thus, the hybrid TTD array can create the enhanced codebook by setting the n-th
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Table 2.1: Phase and delay tap settings for robust codebook design

Array arch. w[m] ϕA,n τA,n ϕD,n τD,n

Analog TTD wA[m] (2.8) (2.9) N/A N/A

Hybrid TTD wA[m]⊙wD[m] (2.10) (2.11) N/A (2.12)

Digital wD[m] N/A N/A (2.13) (2.14)

taps of its analog and digital combiners in the following way

ϕA,n = (n− 1)[π sin(θs)− ψ], (2.10)

τA,n = (n− 1− ⌊(n− 1)/Nr⌋Nr)R/BW, (2.11)

τD,n = ⌊(n− 1)/Nr⌋NrR/BW, (2.12)

where θs = −π/2 and ψ is defined as earlier. The result in (2.12) suggests that the h-th

sub-array needs to introduce a digital delay of 2(h − 1)NrR time samples, assuming the

Nyquist sampling frequency fs = 2BW. The considered hybrid sub-array based array in

Fig. 2.2 does not apply the phase changes in the digital domain. The digital array can create

the enhanced codebook by using the following digital taps

ϕD,n = (n− 1)∆ϕ, ∆ϕ ∈ R (2.13)

τD,n = (n− 1)R/BW. (2.14)

The phase tap in (2.13) implies that the digital array can leverage the DSP to introduce

any phase spacing ∆ϕ. With fs = 2BW, the n-th antenna branch will introduce the digital

delay of 2(n− 1)R time samples according to (2.14).

The phase and delay taps required for the design of a robust codebook are summarized

in Table. 2.1 for all three arrays.

We note that the analog and hybrid sub-array based TTD architectures have the same

limited flexibility of receive combining in beam training. Namely, once their corresponding

analog combiners wA[m], m ∈ M, and digital combiners wD[m], m ∈ M are set up, they

cannot be further changed or manipulated in DSP. In both architectures, this happens
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because the signals from different antenna branches are completely or partially combined

before passing through ADCs. Thus, the inability to rotate the combiners limits the number

of sounded directions to D in both arrays. The diversity order R is also limited, but not

necessarily the same in both arrays, as discussed later in the chapter. On the other hand,

the digital array can exploit digitized signals in all antenna branches and combine them from

many different directions in DSP by changing the phases ϕD,n, ∀n. Different phases ϕD,n

introduces angular shifts of the entire codebook, and enable scanning more angles and/or

higher diversity.

2.5.2 DSP Algorithm for UE Beam Training

We use the designed beam training codebook to develop a non-coherent power-based DSP

angle estimation algorithm with high accuracy [BYG20]. Non-coherent algorithms are pre-

ferred in mmW beam training as they do not require measurements in (2.3) to include the

phase information, and thus they can avoid complex joint synchronization and beam training

receiver processing.

Since the subcarriers from Md, ∀d, experience different channels, we can consider the

received signal in all D probed directions as random. In a clustered multipath channel, the

vector of expected powers in D directions p = [p1, p2, ..., pD]
T can be expressed as

p = Bg +NRσ
2
N1, (2.15)

where B ∈ RD×Q is a known dictionary obtained by generalizing the UE beamforming (BF)

gains in Q angles ξq, q = 1, ..., Q, for all D combiners. The (d, q)-th element of B is defined

as [B]d,q = |fHd aR(ξq)|2, where aT(ξq) is the receive spatial response introduced in Sec. 2.4.1.

The vector g ∈ RQ has only one non-zero element. For a detailed derivation of (2.15), please

refer to Appendix A.1.

During beam training, the estimates of pd, ∀d, are obtained by averaging out the powers
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of all subcarriers from the corresponding setMd, ∀d, as follows

p̂d =
1

R

∑
m∈Md

|y[m]|2. (2.16)

In fact, it can be shown that the sample mean in (2.16) is the maximum likelihood (ML)

estimator of pd, ∀d. The vector of all power estimates is denoted as p̂, which approximate

p in (2.15). Note that p̂ is estimated using M = DR frequency-domain measurements

y[m],∀m, in (2.3) of only one OFDM symbol. Based on the power measurement model in

(2.15), AoA estimation can be solved based on the ML criterion using simple linear algebra

operations. The AoA θ(R) estimate is obtained by finding the index of the column in B

which has the highest correlation with p̂, which is mathematically expressed as

θ̂(R) = ξq⋆ , where q
⋆ = argmax

q

p̂T[B]:,q
||[B]:,q||

. (2.17)

The proposed algorithm can achieve high AoA estimation accuracy by increasing Q, i.e.,

the number of the columns in the dictionary matrix B. Although this increases the DSP

complexity, the proposed beam training scheme can still be performed with a single OFDM

symbol. Note that the accuracy can be negatively affected by hardware impairments, which

distort the combiners and thus the elements [B]d,q ,∀d, q, which might not correspond to the

expected beamforming gains. In this chapter, we use the root mean square error (RMSE) of

AoA estimation as main metric for the comparison of the proposed TTD architectures. The

AoA RMSE closely describes the beam training performance and it can be directly converted

to an alternative metric in other applications, including the spectral efficiency in mmW data

communication and position error in localization.

2.6 Comparison of TTD Architectures in UE Beam Training

In this section, we study the impact of limited TTD delay range in both architectures on beam

training performance and we explain the interplay between the number of antenna elements

NR, bandwidth BW, and diversity order R. We also numerically evaluate the impact of
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hardware impairments and ADC quantization error on the AoA estimation accuracy.

2.6.1 Impact of Limited TTD Delay Range on UE Beam Training

In this subsection, we assume that the analog and hybrid sub-array based architectures have

TTD elements with the same state-of-the-art maximum delay compensation of TC-max = 15

ns, or equivalently the same interleaving factor [BYL21].

To realize the proposed beam training algorithm, τA,NR
≤ TC-max needs to be satisfied for

the analog, and τA,Nr ≤ TC-max for the hybrid sub-array based TTD array. Based on these

conditions, it is straightforward to show that the achievable diversity order R is limited as

1 ≤ R ≤ TC-max

NR − 1
BW and 1 ≤ R ≤ TC-max

Nr − 1
BW, (2.18)

for the analog and hybrid sub-array based array, respectively. Note that with R < 1, the

beam training algorithm cannot be realized with a single OFDM symbol. On the other

hand, a large R provides more precise ML estimates in (2.16) due to better averaging. The

expressions in (2.18) describe the dependency of R on the basic system parameters NR, Nr,

and BW. In the remainder of this subsection, we numerically evaluate the interplay among

them.

We study the beam training performance of different architectures in terms of AoA

estimation accuracy, assuming that R is constrained to be maximal power of 2. We consider

a system with carrier frequency fc = 60 GHz, bandwidth values in the range 0.5 GHz ≤

BW ≤ 4.5 GHz, and Mtot = 4096 subcarriers for any bandwidth. The transmitter array size

is NT = 128, while the receive array size can take values NR = {16, 32}. There are Nr = 4

antennas in each sub-array in hybrid TTD architecture, regardless of the total number of

antennas. The number of probed directions in beam training is assumed to be D = 2NR and

the dictionary size is Q = 1024. The channel consists of L = 3 clusters, where one is 10 dB

stronger than the other two. Fading is simulated by 20 rays within each cluster with up to

10 ns spread. There is no intra-cluster angular spread. Pre-beamforming SNR is defined as
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Figure 2.9: Beam training performance comparison of the three considered architectures and

the interplay of R, NR, and BW.

SNR ≜
∑L

l=1 σ
2
l /σ

2
N, and it is assume to be SNR = −20 dB.

In Fig. 2.9, we present the results for the beam training performance and the interplay

of the considered parameters. In both cases NR = 16 and NR = 32, the analog TTD array

architecture has the highest RMSE of AoA estimation due to low achievable diversity order

R. As discussed earlier, analog arrays have large delay range requirements, and thus better

estimation accuracy (equivalently, higher R) requires larger BW. Similarly, increasing the

array size NR can have a positive effect on the performance. However, if BW is not large

enough and there is no diversity (R = 1), larger arrays do not improve the estimation

accuracy in frequency-selective channels. The analog arrays do not have the results for the

values of BW for which the proposed single-shot beam training cannot be realized (R < 1).
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In hybrid sub-array based TTD arrays, higher diversity orders can be utilized since Nr < NR,

which leads to better estimation accuracy compared to analog arrays. Increase in the number

of antenna elements does not change achievable R in hybrid sub-array based arrays since we

assume that Nr = 4 remains constant. It does, however, improve the estimation accuracy

of hybrid arrays, which approaches the sub-degree performance of fully digital arrays. Since

R can be maximized through DSP in digital arrays, their performance is independent of

BW. The floor of the AoA RMSE is determined by the dictionary size Q = 1024. Based

on described results in Fig. 2.9, one can predict the diversity order R and beam training

performance for any considered array architecture, given the system parameters BW, NR,

and TC-max.

2.6.2 Impact of TTD Hardware Impairments on UE Beam Training

Next, we study the impact of practical TTD hardware impairments and ADC quantization

errors on beam training in analog and hybrid sub-array based architectures. Here we keep

AoA RMSE as the performance metric and use the same system parameters as in the previous

subsection. We consider a specific case with NR = 16 and BW = 2 GHz.

In Fig. 2.10, we study the beam training performance under the phase and delay errors.

Unlike analog and hybrid TTD arrays, fully digital array is not sensitive to these hardware

impairments and we include its performance with the maximum R = 32 as the benchmark.

With the considered system parameters, analog TTD array has the diversity order R = 2,

which limits its angle estimation accuracy and robustness to hardware errors. We can see

that the beam training algorithm can tolerate phase errors with the standard deviation of

up to σP = 10◦ and delay errors with the standard deviation of up to σT = 50 ps. Hybrid

sub-array based TTD array achieves a lower estimation accuracy and greater robustness to

delay and phase errors than analog TTD array since it leverages the diversity order R = 8 in

beam training. It can tolerate large phase errors and delay errors with the standard deviation

of around σT = 200 ps. It is worth noting that the delay errors in hybrid sub-array based
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Figure 2.10: Beam training performance comparison of the three considered architectures

under the distorted delay taps τ̃n ∼ N (τn, σ
2
T) , ∀n, and phase taps ϕ̃n ∼ N (ϕn, σ

2
P) , ∀n.

The curves with the delay error (dashed with stars) and phase error (dashed with diamonds)

are associated with the upper and lower x-axis, respectively.
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Figure 2.11: Beam training performance comparison of the three considered architectures

under different ADC resolutions.

arrays are independent of the reduced delay taps in the corresponding TTD elements.

In Fig. 2.11, we present how finite ADC resolution affects the beam training performance

with different array architectures. For fair comparison, we assume that the automatic gain

control (AGC) outputs a unit-variance signal in all architectures. We can observe that the

AoA estimation accuracy of the analog TTD array with a single RF chain is marginally

affected by low ADC resolution. On the other hand, low resolution ADCs have a noticeable

impact on beam training with the hybrid sub-array basedTTD and fully digital arrays, as

combined quantization errors from different RF chains deteriorate the estimation accuracy.

We note, however, that the deteriorated accuracy is still within the sub-degree range and

lower than that of the analog array. Our results indicate that practical mmW and sub-THz

transceivers may require ADCs with only a few bits of resolution for effective beam training.

For example, with only 3-bit resolution, the performance loss is negligible in any array. In
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addition, low-resolution ADCs have a positive impact on the overall power efficiency of the

considered TTD architectures.

2.7 Joint Beam Training Between BS and UE

In this section, we describe a joint beam training algorithm between the BS and UE that

requires only one OFDM symbol.

2.7.1 System Model for Joint Beam Training

We a consider a similar channel model as in Sec. 2.4.1, but we treat the channel gains

gl[m]. ∀l,m, and thus channel matrices H[m], ∀m, as constants. Equivalently, the time

domain channel matrix is assumed to be constant during the beam training procedure,

regardless of its duration (one or multiple OFDM symbols). We assume that the BS is

equipped with a fully digital antenna array, while the UE is assumed to be equipped with

a fully connected hybrid TTD array described in Sec. 2.3. Both arrays are assumed to be

unaffected by hardware impairments.

Let v[m] ∈ CNT , ∥v[m]∥2 = 1, be a normalized BS digital precoder for the m-th sub-

carrier. Unlike in beam training for the UE only, the AoD is not known in advance and the

precoder v[m] is not the same for all subcarriers. Similarly, let wr[m] ∈ CNR , ∥wr[m]∥2 = 1,

be a normalized UE analog TTD combiner for the m-th subcarrier in the r-th RF chain. We

omit the subscript ’A’ in wr[m] for brevity. With the corresponding channel in (2.1), the

received signal yr[m] at the m-th subcarrier in the r-th RF chain can be expressed as

yr[m] = wH
r [m]H[m]v[m]s[m] +wH

r [m]n[m], m ∈M, (2.19)

where s[m], |s[m]|2 = 1/M , is a BPSK pilot at them-th subcarrier and n[m] ∼ CN (0, σ2
NINR

)

is white Gaussian noise. The n-th element of wr[m] can be expressed as

[wr[m]]n = exp [−j (2π(fm − fc)τn + ϕr,n)] /
√
NR, (2.20)
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where fm is the frequency of the m-th subcarrier, defined as fm = fc − BW/2 + (m −

1)BW/(Mtot − 1).

2.7.2 Codebook Design for TTD-based Joint Beam Training

Joint beam training algorithm requires frequency-dependent codebooks to be designed both

at the BS and UE side. Compared to the UE codebooks in [YBC19,BYG20,BYL21], the

codebooks for joint training are based on different subcarrier selection and mapping schemes.

With NT and NR antennas at the BS and UE, respectively, there are at least NTNR beam

pairs to be considered in the training. Instead of mapping the subcarriers into D different

UE beams as in the previous sections, we aim to map them into different beam pairs. Thus,

the set of used subcarriersM has M = NTNR elements. We propose an OFDM waveform

with non-uniform subcarrier selection for joint BS-UE training. The total ofMtot subcarriers

is divided into NR groups, and in each group, the first NT subcarriers are selected and loaded

with BPSK pilots. Mathematically, the setM is defined as

M =
{
m | m = mT + (mR − 1)⌊Mtot/(NR)⌋, mT = 1, · · · , NT, mR = 1, · · · , NR

}
, (2.21)

where ⌊x⌋ rounds x to the nearest lower integer. At the BS side, we design a codebook where

in each of the NR groups, the NT subcarriers are assigned NT discrete Fourier transform

(DFT) precoders umT
, mT = 1, ..., NT, that cover the entire angular range (−π/2, π/2).

The k-th element of umT
, ∀mT, is defined as

[umT
]k = exp[−j2π(k − 1)(mT − 1−NT/2)/NT]/

√
NT. (2.22)

Therefore, the subcarriers from the setM(T)
mT = {m | m = mT+(mR−1)⌊Mtot/(NR)⌋, mR =

1, ..., NR} are assigned the mT-th DFT precoder. In other words, the precoders v[m], m ∈

M(T)
mT are designed such that

v[m] = umT
, m ∈M(T)

mT
. (2.23)

At the UE side, we focus on the first RF chain and design a codebook where the NT sub-

carriers from the set M(R)
mR = {m | m = mT + (mR − 1)⌊Mtot/(NR)⌋, mT = 1, ..., NT} are
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Figure 2.12: Illustration of subcarrier selection and codebook design at the BS and UE,

assuming NT = 6 and NR = 6.

assigned the same DFT combiner fmR
, whose n-th element is defined as

[fmR
]n = exp[−j2π(n− 1)(mR − 1−NR/2)/NR]/

√
NR. (2.24)

Thus, the TTD combiners w1[m], m ∈ M(R)
mR , in the first RF chain are designed to satisfy

the following equality

w1[m] = fmR
, m ∈M(R)

mR
. (2.25)

The subcarrier selection and codebook design at both BS and UE are illustrated on a small

example in Fig. 2.12.

Since the BS is equipped with a digital array, its codebook in (2.23) can be easily de-

signed through frequency-domain DSP. Thus, the precoders for all subcarriers from the set

M(T)
mT can be perfectly aligned in the mT-th angular direction. An example of the resulting

codebook is provided in Fig. 2.13(a). On the other hand, the UE codebook in (2.25) is cre-
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ated by setting the delay taps τn, ∀n, and phase taps ϕr,n, ∀r, n. Similarly as in [YBC19],

we set the delay taps to be

τn = (n− 1)/BW, 1 ≤ n ≤ NR. (2.26)

Clearly, the delay difference between neighboring antennas is ∆τ = 1/BW in (2.26). Unlike in

[YBC19], there are NT subcarriers that need to be mapped into the same direction according

to (2.25). The NT subcarriers from the setM(R)
mR correspond to different frequencies and thus

they experience the beam squint effect, i.e., slightly different combining angles. Consequently,

the BF gains at the NT subcarriers are different. An intuitive way to reduce the gain

difference is to make the beam squint symmetric around the pointing direction of the desired

precoders fmR
, ∀mR. This is achieved by aligning the codebook using the phase shifters.

The squint alignment phase tap is the same in all RF chains and for the n-th antenna it is

given as

ϕsq,n = −(n− 1)mod (2π(fmid − fc)/BW+ π, 2π) , (2.27)

where fmid = fNT/2 +BW/(2Mtot − 2) is the ”middle” frequency of the subcarriers inM(R)
1

and mod() is the modulo operator. Since the alignment taps in (2.27) are frequency-flat,

they are applied to all sets M(R)
mR , ∀mR. To increase the robustness to frequency-selective

channels through frequency diversity, we rotate the UE codebook in different RF chains by

using the following rotation phase taps

ϕrot,r,n = (r − 1)(n− 1)2⌊NR/NH⌋π/NR, ∀r, n. (2.28)

The taps in (2.28) ensure that the codebook diversity is R = NH, i.e., that each BS-UE beam

pair is probed by NH different subcarriers in different RF chains. For example, the beam

pair that is probed by the first subcarrier from M(R)
mR in the first RF chain, is also probed

by the first subcarrier fromM(R)
mR+⌊NR/NH⌋ in the second RF chain, the first subcarrier from

M(R)
mR+2⌊NR/NH⌋ in the third RF chain, etc. Given ϕsq,n, ∀n, and ϕrot,r,n, ∀r, n, we design the

overall phase taps as

ϕr,n = ϕsq,n + ϕrot,r,n, 1 ≤ r ≤ NH, 1 ≤ n ≤ NR. (2.29)
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(a) (b)

Figure 2.13: The resulting codebooks (a) at the BS with the fully digital array, and (b) at

the UE with the TTD array, assuming NT = 64 and NR = 16. The beams are multiplied by

the antenna size and they are plotted in the log scale.

The phase difference between the neighboring antennas in the r-th RF chain in ∆ϕr =

(r− 1)2⌊NR/NH⌋π/NR−mod (2π(fmid − fc)/BW+ π, 2π). An example of the resulting UE

codebook is provided in Fig. 2.13(b).

In the next subsection, we study the limitations of the designed codebooks. We first

explain how the proposed design scales with the basic system parameters. Then we derive

the maximum BF gain loss due to the beam squint at the UE side. Lastly, we explain why

the proposed codebooks may require a larger transmit power or a denser network deployment

than the codebooks in the conventional EBS.
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2.7.3 Limitations of Codebook for TTD-based Joint Beam Training

The designed codebooks experience three main challenges: 1) scalability of the design train-

ing parameters when the numbers of antenna elements at the BS and UE increase; 2) BF gain

loss at the UE side due to the beam squint in each probed direction; 3) required transmit

power in beam training and/or distance between the BS and UE (network density).

1) Scalability of design parameters : The codebooks based on frequency-to-beam-pair

mapping are intrinsically limited by the total number of subcarriers Mtot in the OFDM

system. As discussed in Sec. 2.7.2, the design requires M = NTNR subcarriers to be used in

the training. Therefore, the conditionM ≤Mtot need to be satisfied to realize a joint BS-UE

beam training with a single OFDM symbol and codebook diversity R = NH. In the case of

large array sizes whenM > Mtot, the training can be realized by making a trade-off between

the required number of training symbols and diversity R. A single-symbol beam training

is possible so long as ⌈M/(NHMtot)⌉ ≤ 1. The idea is to leverage sectorized beam probing

at the UE, where each RF chain probes N ′
R, NR/NH ≤ N ′

R < NR, directions using all M

subcarriers. This requires a different design of the delay and rotation phase taps in (2.26)

and (2.28), respectively, and it comes at the cost of a lower codebook diversity R (< NH),

as the beam pairs cannot be probed by NH subcarriers. On the other hand, realizing beam

training with R = NH when M > Mtot requires the use of at least ⌈M/Mtot⌉ wideband

training symbols to probe all beam pairs. In the consecutive symbols, the UE needs to

adjust the rotation phase shifts in (2.28). For the rest of this chapter, we will assume that

M < Mtot, i.e., beam training can be realized with a single OFDM symbol and R = NH.

2) BF gain loss at UE side due to beam squint : As shown in an example of the UE code-

book in Fig. 2.13(b), the subcarriers from MR,mR
, ∀mR, are combined from slightly different

angles and thus can experience different BF gains. The phase taps in (2.27) reduce the BF

gain loss by aligning the middle frequencies inM(R)
mR , ∀mR, with the desired probing direc-

tions. Thus, maximal gain loss occurs for subcarriers with the lowest and highest frequencies
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in M(R)
mR , ∀mR. For M(R)

1 , it can be defined as the inner product of the impairment-free

combiners that correspond to frequencies fmid and f1:

∆G(R)
max = N2

R −

∣∣∣∣∣
NR∑
n=1

ej(2πfmidτn+ϕr,n−2πf1τn−ϕr,n)

∣∣∣∣∣
2

(2.30)

Since fmid − f1 = (NT − 1)BW/(2Mtot − 2), (2.30) can be simplified as follows

∆G(R)
max = N2

R −

∣∣∣∣∣
NR∑
n=1

ej(n−1)π(NT−1)/(Mtot−1)

∣∣∣∣∣
2

= N2
R −

∣∣∣∣sin(πNR(NT − 1)/(2Mtot − 2))

sin(π(NT − 1)/(2Mtot − 2))

∣∣∣∣2 . (2.31)

The maximum gain loss in (2.31) is obtained when M = NTNR = Mtot and it can be

approximated as follows:

∆G(R)
max ≈ N2

R −
1

|sin(π/(2NR))|2
(2.32)

As shown in Fig. 2.13(b), the closer the DFT combiners are to 0◦, the smaller beam squint

they experience. However, their beam widths are also smaller around 0◦ and thus the maxi-

mum gain loss in (2.31) and (2.32) applies to all probed directions, i.e, all setsM(R)
mR , ∀mR.

3) Transmit power and network density : Since the transmit power pT is divided among

M = NTNR OFDM subcarriers, which probe NTNR different beam pairs, roughly L/M of

the transmit power is combined at the receiver using a single RF chain in a sparse mmW

channel with L propagation clusters. With NH UE RF chains, NHL/M of the transmit power

is combined at the receiver. Thus, assuming a free-space path loss model, the total received

signal power at the UE in TTD beam training can be expressed as follows

pR[dB] = pT[dB] +G(T)[dBi] +G(R)[dBi] + 20 log10

(
λ

4π

)
− 20 log10 (d) + 10 log10

(
NHL

M

)
,

(2.33)

whereG(T) andG(R) are the BF gains at the BS and UE, respectively, λ is the wavelength, and

d is the distance between the BS and UE. Unlike in conventional EBS, the received power in

(2.33) has the penalty term 10 log10
(
NHL
M

)
, which depends on system parameters and channel
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geometry. For this reason, the proposed TTD beam training requires a higher transmit power

pT at the BS than conventional EBS to support the same distance d. Alternatively, in the

case when the transmit power budget is limited and cannot be increased, TTD beam training

requires a denser network deployment, i.e., smaller distances between the BSs and UEs.

2.7.4 DSP Algorithm for Joint Beam Training

We use the designed BS and UE beam training codebooks to develop a DSP algorithm for

joint AoD and AoA estimation. We propose a non-coherent power-based algorithm that does

not rely on phase information in samples in (2.19). We also consider a coherent power-based

algorithm and include it in the analysis of the misalignment probability as the benchmark.

Let b be the index of the BS-UE beam pair defined by the precoder umT
and combiner

fmR
. We denote the set of R = NH subcarriers that probe the b-th beam pair asM(B)

b . To

define M(B)
b , we first find the subcarrier mb from M in (2.21) that is mapped to b in the

first UE RF chain, and then account for R − 1 subcarriers in other RF chains by using the

rotation shift multiplier in (2.28):

M(B)
b =

{
m|m =mod

(
mb + (r − 1)

⌊
NR

NH

⌋⌊
Mtot

NR

⌋
, M

)
, r = 1, ..., R

}
. (2.34)

We vectorize the transmitted symbols s[m], ∀m ∈ M(B)
b for the beam pair b and we

denote the resulting vector sb. Similarly, we vectorize the corresponding received signal

samples yr[m], ∀(r,m),m ∈ M(B)
b , and we denote that vector yb ∈ CNH . A non-coherent

power measurement p̂
(nc)
b for the beam pair b is then defined as follows

p̂
(nc)
b =

2

σ2
N

yH
b yb =

2

σ2
N

∑
(r,m),m∈M(B)

b

|yr[m]|2, (2.35)

where 2/σ2
N is the scaling term. Note that p̂

(nc)
b includes powers of R frequency-domain

samples (subcarriers). On the other hand, a benchmark coherent measurement p̂
(c)
b , which
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requires complex synchronization, is defined in the following way

p̂
(c)
b =

2

∥sb∥22 σ2
N

|yH
b sb|2 =

2

∥sb∥22 σ2
N

∣∣∣∣∣∣∣
∑

(r,m),m∈M(B)
b

y∗r [m]s[m]

∣∣∣∣∣∣∣
2

, (2.36)

where 2/(∥sb∥22 σ2
N) is the scaling term. Coherent power measurements were previously stud-

ied in [LLH17].

The AoD and AoA estimates are based on the beam pair index b̂
(nc)
max that corresponds to

the maximum measured power in (2.35). The maximum power measurement p̂
(nc)
max and index

b̂
(nc)
max are found as follows

p̂(nc)max = max
p̂
(nc)
b

p̂
(nc)
b , b̂(nc)max = argmax

b
p̂
(nc)
b . (2.37)

Let ξ
(T)
m∗

T
and ξ

(R)
m∗

R
be the steering angles that correspond to b̂

(nc)
max at the BS and UE side,

respectively. Then the on-grid AoD and AoA estimates are

θ̂(T) = ξ
(T)
m∗

T
, θ̂(R) = ξ

(R)
m∗

R
(2.38)

Note that the angle estimation accuracy of the proposed algorithm is limited by the number

of antenna elements at the BS NT and at the UE NR. The use of larger antenna arrays can

increase the accuracy, but it also imposes the beam training scalability challenges as discussed

earlier. The benchmark AoD and AoA estimates can be obtained using the coherent power

measurements p̂
(c)
b , ∀b, in 2.37.

2.8 Beam Pair Misalignment Probability in Joint Beam Training

In lows SNRs, the performance of the proposed joint beam training can be affected by noise.

In this section, we mathematically describe the beam pair misalignment probability P
(nc)
miss

in the presence of Gaussian noise. We also demonstrate that the misalignment probability

is lower in the proposed wideband beam training than in the fast EBS with a single-carrier

waveform.
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Without loss of generality, let the index b = 1 correspond to the optimal beam pair with

the maximum received power, i.e., p
(nc)
max = p

(nc)
1 and b

(nc)
max = 1. The beam pair misalignment

probability describes the probability that the maximum power measurement p̂
(nc)
max and index

b̂
(nc)
max are not equal to p̂

(nc)
1 and 1, respectively. Mathematically, this can be written as

follows [LLH17]

P
(nc)
miss = P[b̂(nc)max ̸= 1] = P

[
M⋃
b=2

p̂
(nc)
1 < p̂

(nc)
b

]
(2.39)

Due to the independence of noise samples across different subcarriers and orthogonality

of DFT beams in different RF chains, the power measurements p̂
(nc)
b , ∀b, are independent.

However, the events p̂
(nc)
1 < p̂

(nc)
b , ∀b are not independent, which makes it hard to determine

the probability P
(nc)
miss exactly. For this reason, we calculate the upper bound on the misalign-

ment probability. Using the union bound rule, the upper bound P
(nc)
up can be expressed in

the following way [LLH17]

P
(nc)
miss ≤

M∑
b=2

P[p̂(nc)1 < p̂
(nc)
b ] = P (nc)

up . (2.40)

To calculate P
(nc)
up in (2.40), we need to know the distributions of p̂

(nc)
b , ∀b. Since the re-

ceived signal samples yr[m], ∀(r,m),m ∈ M(B)
b , in (2.19) are complex Gaussian random

variables with distribution CN (wH
r [m]H[m]v[m]s[m], σ2

N), the power measurements p̂
(nc)
b , ∀b,

have a non-central chi-squared distribution X 2(λb, 2R) with 2R degrees of freedom and non-

centrality parameter λb given as

λb =
2

σ2
N

1

M

∑
(r,m)∈M(B)

b

|wH
r [m]H[m]v[m]|2. (2.41)

The benchmark coherent power measurements p̂
(c)
b , ∀b, have a non-central chi-squared dis-

tribution X 2(λb, 2) with 2 degrees of freedom and non-centrality parameter λb = µ∗
bµb, where

µb =
√
2√

RMσ2
N

∑
(r,m)∈M(B)

b
wH
r [m]H[m]v[m].

The expression for P
(nc)
up in (2.40) can we rewritten as follows

P (nc)
up =

M∑
b=2

P

[
p̂
(nc)
1

p̂
(nc)
b

< 1

]
. (2.42)
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The ratio p̂
(nc)
1 /p̂

(nc)
b of two non-central chi-squared random variables gives a random variable

with a doubly non-central F distribution, denoted as F (n1, n2, η1, η2). Based on the chi-

squared distributions, the degrees of freedom in the F distribution are n1 = 2R and n2 = 2R,

while the non-centrality parameters are given as η1 = λ1 and η2 = λb, b > 1. Thus, the

probability P
[
p̂
(nc)
1 /p̂

(nc)
b < 1

]
represents the cumulative distribution function of the doubly

non-central F random variable, which can be expressed as

P

[
p̂
(nc)
1

p̂
(nc)
b

< 1

]
= F (1|n1, n2, η1, η2) = F (1|2R, 2R, λ1, λb). (2.43)

The upper bound on the beam pair misalignment probability in (2.40) can be then written

as

P (nc)
up =

M∑
b=2

F (1|2R, 2R, λ1, λb). (2.44)

In the following subsection, we compare the proposed wideband joint beam training with

fast EBS that uses a single-carrier waveform. The two approaches are compared in terms

of the SNR per measurement, required training overhead, and misalignment probability in

a simple LoS channel.

2.8.1 Comparison with Fast Single-Carrier based EBS

The proposed joint beam training can be realized using only one OFDM symbol. However,

with a larger number of subcarriers, the duration of the OFDM symbol can be significantly

longer than that of a symbol with a single-carrier based waveform. Therefore, there is a

question if the proposed joint beam training has an advantage over the single-carrier based

EBS in terms of the required overhead and beam training performance. Here we compare

the two approaches and demonstrate the benefits of the proposed joint beam training.

We first compare the proposed beam training and EBS in terms of the SNR per sample. In

the proposed OFDM-based beam training, the measurements include powers of R samples

from different subcarriers due to the frequency-dependent codebooks at both the BS and

UE. As assumed in the system model, the signal power and noise power per subcarrier are
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Figure 2.14: Misalignment probability in a simple LoS channel.

|s[m]| = 1/M and σ2
N, respectively. Thus, the SNR per sample in the proposed beam training

is

SNR =
1

Mσ2
N

. (2.45)

In the single-carrier based EBS, power measurements are made across multiple time-domain

samples (symbols) and the entire bandwidth is used for each sample. Thus, the SNR per

sample can be expressed using the definition in (2.45) and assuming that M = Mtot as

follows

SNR =
1

Mtotσ2
N

BWTTD

BWEBS

, (2.46)

where the ratio BWTTD/BWEBS accounts for a potential difference in the bandwidths used

in the proposed beam training and EBS. Based on the SNRs in (2.45) and (2.46), we see that

if BWTTD = BWEBS, the proposed OFDM-based beam training has Mtot/M times larger

SNR per sample that the single-carrier based EBS. Clearly, the SNRs are the same when

the EBS uses Mtot/M narrower bandwidth than the proposed beam training.
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Next, we compare the two approaches in terms of the beam pair misalignment probability

in a simple LoS channel. For simplicity, all beams are assumed to have a uniform beamform-

ing gain, similar as in sector beams. We consider NT = 32 antennas at the BS and NR = 16

antennas at the UE. The bandwidth in both approaches is BWTTD = BWTTD = 1 GHz.

There are Mtot = 4096 subcarriers in the OFDM system, M = 512 of which are used in the

proposed beam training. The pre-combining SNR in the proposed beam training is set to be

SNR = −22 dB. It is assumed that the total duration of all transmitted symbols is the same

in both approaches and it is equal toMtot/BW (one OFDM symbol without CP). With such

total duration and R = NH, the number of samples per beam pair power measurement is R

and RMtot/M in the proposed beam training and single-carrier based EBS, respectively. The

misalignment probability is presented in Fig. 2.14 as a function of the number of RF chains

NH. We present both the simulated curves and the calculated upper bounds. The results

indicate that the coherent power measurements lead to a lower misalignment probability

than non-coherent power measurements in both the proposed beam training and EBS. Ad-

ditionally, the proposed beam training is shown to have the same misalignment probability

as the EBS when coherent power measurements are used in simple LoS channels. However,

when non-coherent power measurements are used, the proposed joint beam training outper-

forms the EBS. The main reason for this is a higher SNR per sample in the proposed beam

training with an OFDM waveform and frequency-dependent beams. Similar as in energy

detection algorithms in spectrum sensing, the required number of samples in non-coherent

beam training highly depends on the SNR. Thus, the EBS needs more samples to achieve

the same misalignment probability as the proposed beam training, numerically studied in

Fig. 2.15. The simulated curves in Fig. 2.15 indicate that the EBS needs an NS = 3 times

or NS = 4 times higher number of samples for a comparable performance.

One of the main advantages of the proposed beam training over the fast single-carrier

based EBS is a lower total required overhead. The overhead in the proposed beam training

is equivalent to the duration of a single OFDM symbol. Assuming a 7% CP, the overhead
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Figure 2.15: Misalignment probability in the EBS when more samples (symbols) are used.

in the proposed training can be expressed as follows

TTTD = 1.07Mtot
1

BWTTD

. (2.47)

On the other hand, the overhead of the EBS depends on the total duration of transmitted

single-carrier symbols. During the one OFDM symbol in the proposed beam training, a

total of MtotBWEBS/BWTTD single-carrier symbols are transmitted in the EBS. However,

as discussed earlier, the EBS needs to increase the number of symbols (samples) to achieve

the same performance as the proposed beam training. In addition, the EBS requires the

BS and UE to set up and switch the beams for each probed beam pair. Since the BS is

equipped with a digital array, its beam can be set up and switched in DSP. On the other

hand, the hybrid array at the UE needs to reconfigure its phase shifters when a different

receive beam (or a set of receive beams) is probed. Clearly, the reconfiguration can slow

down the beam sweeping process, especially when the UE has a large antenna array and
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Figure 2.16: Total required overhead for beam training.

many beam candidates. Thus, the total training overhead in the EBS can be expressed as

TEBS = NSMtot
BWEBS

BWTTD

1

BWEBS

+NR(Tsetup + Tswitch)

= NSMtot
1

BWTTD

+NR(Tsetup + Tswitch) (2.48)

where Tsetup and Tswitch are the set up and switching times. Based on the state-of-the-art work

on fast-switching antenna arrays, these values are Tsetup = 120 ns and Tswitch = 8 ns [SPL22].

Using the expressions in (2.47) and (2.48), we compare the total training overhead in the

proposed beam training and EBS in Fig. 2.16. The results show that the proposed beam

training has a significantly lower overhead. This comes as a consequence of the fact that the

EBS needs to set up and switch the UE beams and to use NS times more symbols to achieve

the same performance as the proposed approach.

2.9 Evaluation of Joint Beam Training in Realistic Channels

In this section, we evaluate the performance of the proposed joint beam training and EBS

in realistic LoS and non-line-of-sight (NLoS) mmW channels generated in Quadriga channel
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Figure 2.17: Misalignment probability in realistic LoS channels.

simulator [JRB19,JRB14]. We use the beam pair misalignment probability and angle estima-

tion accuracy as the main metrics and we evaluate them for different pre-beamforming SNR

values. The simulation parameters are the same as in the previous section. In this section,

we do not use the simplifying assumption that all beams have a uniform beamforming gain.

In Fig. 2.17, we compare the misalignment probability in LoS channels in the proposed

beam training and EBS. Similar as in the simplified LoS channel in Sec. 2.8.1, the EBS

requires a larger number of samples to achieve the same performance as the proposed beam

training in low SNRs. Without the assumption of uniform beamforming gains, the misalign-

ment probability experiences a floor in high SNR in both approaches. Nevertheless, the

probability floor is still fairly low, in the order of 10−2. The comparison in terms of the

RMSE of angle estimation in LoS channels is presented in Fig. 2.18. The results indicate

that both the proposed beam training and EBS have accurate angle estimation in medium

to high pre-beamforming SNRs. It is worth noting that the RMSEs of AoD and AoA esti-

mation experience floors due to the limited numbers of antenna elements and probed beams
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Figure 2.18: RMSE of (a) AoD and (b) AoA estimation in realistic LoS channels.

at the BS and UE.

The comparison in terms of the misalignment probability in NLoS channels is presented in

Fig. 2.19. Unlike in LoS channels, there are multiple comparably strong propagation clusters

in NLoS channels and it is easier to miss the optimal beam pair, even in high SNRs. Thus,

the floor beam pair misalignment probability is higher in NLoS than in LoS channels for

both the proposed beam training and EBS. In addition, NLoS channels have significantly

larger delay spreads than LoS channels. The proposed beam training, which uses a long

OFDM waveform, is resistant to inter-symbol interference and it can capture the entire

energy of NLoS channels with large delay spreads. On the other hand, short symbols in the

single-carrier based EBS are susceptible to inter-symbol interference and they cannot capture

the time-spread channel energy. This leads to a lower received signal power and a higher

misalignment probability in the EBS. The performance gap between the two approaches can

be reduced by increasing the number of samples, and thus the total overhead, in the EBS.

The RMSE of angle estimation in NLoS channels is presented in Fig. 2.20. Although the

misalignment probability is relatively high in NLoS channels, the RMSE of AoD and AoA

estimation indicates that wrong beam pair estimates correspond to the beams that are close

to the optimal beam pair. However, the RMSE floors are higher than in LoS channels due
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Figure 2.19: Misalignment probability in realistic NLoS channels.

to the presence of multiple propagation clusters and large delay spreads.

2.10 Conclusions

This chapter introduced three TTD architectures with baseband delay elements as potential

candidates for mmW beam training. We demonstrated that a high AoA estimation accuracy

can be achieved with both analog and hybrid TTD architectures using a power measurement

based beam training scheme, which requires only one wideband training symbol. The depen-

dency of the codebook design and beam training performance on system parameters, includ-

ing the bandwidth, number of antenna elements, and maximum TTD delay compensation,

was analyzed and numerically evaluated in a practical multipath fading channels. Numerical

simulations revealed the angle estimation accuracy and robustness to hardware impairments

of the proposed TTD architectures in UE beam training when benchmarked against the fully

digital array. We extended the idea of beam training with frequency-dependent beams to
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Figure 2.20: RMSE of (a) AoD and (b) AoA estimation in realistic NLoS channels.

joint beam training between the BS and UE. The beam pair misalignment probability and

required overhead in the proposed joint beam training were analyzed and compared to their

counterparts in the EBS. The results indicate that the misalignment probability is at least

as low as in the EBS, while the required overhead is lower than in the EBS.
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CHAPTER 3

Channel Estimation using True-Time-Delay Arrays

3.1 Introduction

Due to large available bandwidth, mmW frequency bands are the key enabler of high data

rates in the fifth generation of wireless communication systems [ABC14]. However, radio sig-

nals experience a higher propagation loss at mmW than at sub-6GHz frequencies [RXM17].

To compensate for this loss, the BS and UE need to be equipped with large antenna arrays

and establish a directional communication link. The link can be established either through

beam training [HGR16], which only provides information of the dominant propagation di-

rection, or channel estimation procedure, which enables the acquisition of the entire channel

between the BS and UE. Having the full channel knowledge provides a series of benefits,

including the ability to optimize the BS and UE beamforming vectors, boost the data rate

through spatial multiplexing, perform optimal power allocation, determine the backup links

to be used in the case of a link failure, and others. For this reason, many researchers have

been actively working on efficient mmW channel estimation techniques over the last several

years.

3.1.1 Prior Work on mmW Channel Estimation

Initial channel estimation algorithms were designed for narrowband frequency-flat mmW

channels [AEL14,BAN14,RVM12,MRM16,LGL16,SR17,MSH18]. In order to avoid exhaus-

tive beam sweeping, the authors in [AEL14] proposed an iterative hierarchical approach to
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estimate the channel parameters. More commonly, previous work aimed to exploit the spar-

sity of mmW channels and formulate channel estimation as a CS problem, which is often

solved using matching pursuit based algorithms [LGL16,MRM16,SR17,MSH18]. However,

mmW bandwidths are wide in practice and that inspired the development of channel esti-

mation algorithms for frequency-selective channels [VAG17,RGV18,GHD16,WXZ19,KC21,

WJG19, LGW19, VAT19]. Similar as in the narrowband case, the wideband algorithms

often rely on the mmW channel sparsity and CS problem formulation in the time or fre-

quency domain [VAG17,RGV18,GHD16,WXZ19,KC21,WJG19]. In multi-carrier systems,

the problem is commonly defined in the frequency domain and the measurements are pro-

cessed per-subcarrier. Previous work proposed various greedy reconstruction algorithms to

estimate the sparse vector of channel parameters, including the path gains and angles.

Some of the previous work has pointed out that the conventional on-grid CS-based algo-

rithms have the basis mismatch problem, which can affect the channel estimation accuracy.

To address this issue, researchers have formulated channel estimation as an atomic norm

minimization problem [TZW18,ZWT19,CZW19,CZW18,DTS18]. The channel parameters

in atomic norm minimization (ANM) problems have continuous representations, which en-

ables super-resolution estimation accuracy. Additionally, ANM-based channel estimation

problems are often expressed as semidefinite programs and they can be efficiently solved

using commercial solvers.

The majority of the existing algorithms was developed for arrays based on PSs. In partic-

ular, analog and hybrid analog-digital arrays were commonly considered, as they are believed

to be promising architecture candidates for mmW systems due to their power efficiencies.

However, unlike fully digital arrays, analog and hybrid arrays cannot probe all angular di-

rections simultaneously and thus may require a significant overhead for channel estimation.

Previous work also studied the impact of hardware impairments on the channel estimation

performance when analog [MH17,VGH19] and hybrid [PGW19,WGW19,ZNY17] arrays are

used. Impairments may be caused by imperfect phase shifters, local oscillators, imbalance
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between in-phase and quadrature samples, antenna misplacement, or other hardware prob-

lems.

Recent work explored the use of different array architectures capable of steering frequency-

dependent beams for fast channel probing [GYS20,YBC19,BYL21]. In [GYS20], the authors

investigated fast beam training with a leaky wave antenna, which can probe all angular di-

rections simultaneously by using different frequency components of the signal. In our recent

work in [YBC19] and [BYL21], we proposed and analyzed TTD array architectures for fast

UE beam training. Compared to phased arrays, TTD arrays have delay elements along with

phase shifters in all antenna branches, which allows them to synthesize frequency-dependent

beams [BYL21,RTY16,CSC18,JLJ18,Jan19,GSR19,GPB20,GG21,LPG21]. In multi-carrier

systems, the subcarriers can probe different angular directions simultaneously even with an

analog TTD array. Frequency-dependent beams, however, have not been extensively stud-

ied in the context of mmW channel estimation. In fact, a number of existing wideband

algorithms rely on frequency-flat precoders and combiners to reduce the complexity burden

of per-subcarrier processing. Additionally, it is unknown how practical hardware impair-

ments might affect the channel estimation performance when TTD array architectures and

frequency-dependent beams are used.

3.1.2 Contributions

We propose a DSP algorithm for mmW channel estimation that leverages TTD frequency-

dependent beams, and then we analyze how it is affected by hardware impairments in the

array. The contributions of this chapter can be summarized as follows:

• We design a TTD training codebook and a frequency-domain CS-based DSP algorithm

to estimate sparse mmW channels. Unlike the majority of existing approaches, the

algorithm is based on per-sub-band processing to reduce the complexity.

• Assuming antenna arrays without hardware errors, the proposed DSP algorithm is
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compared with related state-of-the-art approaches designed for antenna arrays based

on phase shifters in terms of the required number of training frames, channel estimation

accuracy, and computational complexity.

• The performance of the proposed and state-of-the-art algorithms is evaluated in the

presence of hardware impairments in the UE array. Since the proposed algorithm is

designed for a TTD array, its performance is evaluated in the presence of the delay

and phase errors. The performance of the state-of-the-art algorithms is evaluated in

the presence of phase errors.

• We linearize the received signal model with hardware impairments and derive the lower

bound for the variance of the channel parameter estimators. In particular, we derive

the CRLB for the parameters of LoS mmW channels, including the AoD, AoA, and

phase of the complex channel gain.

• A gradient descent based refinement is proposed to improve the estimation of channel

parameters at the cost of a higher computational complexity. The performance of the

algorithm with the proposed refinement is numerically evaluated and compared with

a benchmark approach and derived CRLBs.

3.1.3 Organization and Notation

The rest of the chapter is organized as follows. In Sec. 3.2, we present the system model

with considered hardware impairments and describe the CS-based problem formulation. In

Sec. 3.3, we explain how the proposed TTD channel estimation codebook and DSP algo-

rithm are designed. The comparison with existing approaches in an impairment-free setup

is presented in Sec. 3.4. In Sec. 3.5, the impact of hardware impairments on channel esti-

mation algorithms is evaluated, CRLBs are derived, and parameter refinement approach is

described. Finally, Sec. 3.6 highlights the conclusions from this chapter.

Scalars, vectors, and matrices are denoted by non-bold, bold lower-case, and bold upper-
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Figure 3.1: Considered system model, where the BS is equipped with an analog phased array

and the UE with an analog TTD array.

case letters, respectively. The (i, j)-th element and j-th column of A are denoted by [A]i,j

and [A]:,j, respectively. Conjugate, transpose, Hermitian transpose are denoted by (.)∗, (.)T,

and (.)H, respectively. The Kronecker product of A and B is defined as A⊗B.

3.2 System Model

In this chapter, we study downlink mmW channel estimation between a BS and a UE,

which are synchronized in time. They use the bandwidth BW and communicate at the

carrier frequency fc. The BS is equipped with an analog phased array with NT antennas,

while the UE uses an analog TTD array that has NR antenna elements, as illustrated in

Fig. 3.1. Analog TTD architecture is suitable for UEs because it offers fast and power-

efficient channel probing using frequency-dependent beams [BYL21]. The considered system

uses a CP based OFDM waveform with Mtot subcarriers. Each subcarrier is assumed to be

loaded with a BPSK symbol. When TTD arrays are used in an OFDM system, the CP needs

to be longer than the cumulative delay introduced by the channel multipath components and

TTD circuits, as we previously proved in [YBC19]. Here we assume that this requirement

is satisfied and that the received signal can be modeled in the frequency-domain, after the

analog-to-digital conversion and CP removal.

Let s[m] be a BPSK symbol transmitted at the m-th subcarrier. Since the phased
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array at the BS has frequency-flat beams, symbols s[m],∀m, are precoded with the same

vector v ∈ CNT . On the other hand, the UE combines the signal from its antennas using

a frequency-dependent combiner w[m] ∈ CNR . Therefore, the complex baseband received

signal at the m-th subcarrier can be expressed as follows

y[m] = wH[m]H[m]vs[m] +wH[m]n[m], (3.1)

where H[m] ∈ CNR×NT and n ∼ CN (0, σ2
NINR

) are the channel matrix and vector of complex

white additive Gaussian noise at the m-th subcarrier, respectively.

Since the UE uses an analog TTD array, the n-th element of the frequency-dependent

combiner w(t)[m] is defined as follows [BYL21]

[w[m]]n = exp
(
−j
(
2π(fm − fc)τ̄n + ϕ̄n

))
, (3.2)

where fm = fc−BW/2+(m−1)BW/(Mtot−1), and τ̄n and ϕ̄n are distorted delay and phase

taps in the n-th antenna branch respectively. The distortion comes from various hardware

impairments that can occur in the array, including errors in delay elements, phase shifters,

local oscillators, or other. We assume that hardware impairments are time-invariant and

independent across different antennas. The distorted delay tap is modeled as τ̄n = τn + τ̃n,

where τn is the desired delay tap and τ̃n is the delay error modeled as a Gaussian random

variable τ̃n ∼ N (0, σ2
T). Assuming uniform delay spacing ∆τ between neighboring antennas,

the desired tap is defined as τn = (n− 1)∆τ . Similarly, the distorted phase tap is modeled

as ϕ̄n = ϕn + ϕ̃n, with ϕn being the desired delay tap and ϕ̃n being the phase error modeled

as a Gaussian random variable ϕ̃n ∼ N (0, σ2
P). The desired phase tap is defined as ϕn =

(n− 1)∆ϕ, where ∆ϕ is the phase spacing. It is worth noting that time-invariant hardware

errors can be estimated and corrected or reduced through a calibration process. In this

chapter, however, our main goal is to get a better understanding of their impact on the

channel estimation performance. We leave the problem of error estimation and correction in

TTD arrays for future work.
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3.2.1 Frequency-Selective Channel Model

Due to a high propagation loss, mmW channels have only a few propagation paths. The

channel sparsity has also been proved experimentally through multiple measurement cam-

paigns [XR21,RMS15,RGB13]. We model the channel as frequency-selective, consisting of

L propagation paths and Ntap delay taps.

In the frequency domain, the channel at the m-th subcarrier can be expressed as follows

H[m] =
L∑
l=1

Gl[m]aR(θ
(R)
l )aH

T(θ
(T)
l ), (3.3)

where Gl[m] =
∑Ntap

d=1 glp(dTs − Γl)e
−j 2π

M
md is the complex gain in the frequency domain.

The function p(Γ) models pulse shaping and other analog filtering, Ts is the sampling time,

gl ∈ C and Γl ∈ R are the complex gain and delay of the l-th path, respectively. Assuming

fm/fc ≈ 1, ∀m, the n-th element of the frequency-flat array response aR(θ) is defined as

[aR(θ)]n = exp(−j(n−1)π sin(θ))/
√
NR. The response aT(θ) is defined in a similar way. The

angles θ
(R)
l ∈ [−π/2, π/2) and θ(T)

l ∈ [−π/2, π/2) are the AoA and AoD of the l-th path. By

exploiting the ”column-row” property of matrix multiplication [Str09], the channel in (3.3)

can be written in a compact form as follows

H[m] = ARΛ[m]AH
T, (3.4)

where Λ[m] ∈ CL×L is a diagonal matrix whose non-zero values correspond to the gains

Gl[m], ∀l, and AT ∈ CNT×L and AR ∈ CNR×L are matrices of the spatial responses

aT(θ
(T)
l ), ∀l, at the BS and aR(θ

(R)
l ), ∀l, at the UE, respectively. Let ĀT ∈ CNT×QT

and ĀR ∈ CNR×QR be the dictionaries of spatial responses at the BS and UE side, re-

spectively. The numbers of spatial responses QT and QR depend on the corresponding

number of antenna elements and it usually assumed that QT ≫ NT and QR ≫ NR. Un-

like in an oversampled DFT dictionary, where the spatial responses have equidistant phases,

the dictionaries ĀT = [aT(ξ
(T)
1 ), ..., aT(ξ

(T)
QT

)] and ĀR = [aR(ξ
(R)
1 ), ..., aR(ξ

(R)
QR

)] include the

spatial responses with uniformly spaced angles ξ
(T)
q = −π/2 + (q − 1)π/QT, q = 1, ..., QT,
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and ξ
(R)
q = −π/2 + (q − 1)π/QR, q = 1, ..., QR, respectively. Using these dictionaries, the

expression in (3.4) can be approximated in the following way

H[m] ≈ ĀRΛ̄[m]ĀH
T, (3.5)

where the matrix Λ̄[m] ∈ CQR×QT has L non-zero elements that correspond to the channel

gains Gl[m], ∀l. It is common to assume that QT ≫ L and QR ≫ L, which makes the

approximation error in (3.5) negligible.

3.2.2 Problem Formulation

Existing CS-based algorithms for wideband mmW channel estimation often consider a sym-

metric precoding/combining setup where both the BS and UE use frequency-flat pseudo-

random beams [VAG17, RGV18]. With frequency-flat beams, compressive measurements

at all subcarriers can be modeled with a single measurement matrix, which reduces the

computational complexity and relaxes the memory storage requirements. Here we propose

an asymmetric precoder/combiner design, where the BS uses frequency-flat pseudo-random

beams, while the UE relies on frequency-dependent TTD beams.

Based on the described system model, the BS transmits a BPSK symbol s(t)[m] at the

m-th subcarrier, in the t-th training frame. The transmitted symbol is precoded with a

pseudo-random beamforming vector v(t), whose n-th element is defined as [v(t)]n = ejαn .

The phase αn is assumed to be drawn randomly from the uniform distribution U(0, 2π) in

each antenna branch. At the receive side, the UE uses a frequency-dependent vector w(t)[m]

to combine the signal at them-th subcarrier. Thus, the received signal at them-th subcarrier

in the t-th training frame can be expressed as

y(t)[m] = w(t)H[m]H[m]v(t)s(t)[m] + ñ(t)[m], (3.6)

where ñ(t)[m] = w(t)H[m]n(t)[m]. The UE can remove the contribution of the BPSK symbol

in (3.6) by multiplying the received samples with (s(t)[m])−1. With approximation in (3.5),
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the received signal in (3.6) can be vectorized as follows

y(t)[m] = f (t)[m]Aλ[m] + ñ(t)[m], (3.7)

where f (t)[m] ∈ C1×NTNR is a sensing vector defined as f (t)[m] = v(t)T ⊗ w(t)H[m], A ∈

CNTNR×QTQR is the dictionary defined as A = Ā∗
T ⊗ ĀR, and λ[m] ∈ CQTQR is a sparse

vector of channel gains obtained by stacking the columns of Λ̄[m], i.e., λ[m] = vec(Λ̄[m]).

It is important to note that the vector λ[m] has the same support, i.e., the same indices of

non-zero elements, for any m, since the channel AoD-AoA pairs (θ
(T)
l , θ

(R)
l ), ∀l, are common

for all subcarriers. Assuming that the coherence time is longer than the total time needed

for channel probing, the received signal after T training frames can be vectorized in the

following way

y[m] = F[m]Aλ[m] + ñ[m], (3.8)

where y[m] ∈ CT , y[m] = [y(1)[m], ..., y(T )[m]]T, F[m] ∈ CT×NTNR , F[m] = [f (1)T[m], ...,

f (T )T[m]]T, and ñ[m] ∈ CT , ñ[m] = [ñ(1)[m], ..., ñ(T )[m]]T. Based on the model in (3.8), a

sparse recovery problem for the m-th subcarrier can be defined as

min ∥λ[m]∥1 s.t. ∥y[m]− F[m]Aλ[m]∥22 < ϵ (3.9)

where ϵ is the maximum error power.

Our main goal is to design a low-complexity sparse recovery algorithm that solves (3.9).

Specifically, we aim to design frequency-dependent TTD combiners w(t)[m],∀t,m, and a

DSP algorithm that enable accurate channel estimation with a low computational burden

and reduced training overhead compared to the state-of-the-art. Further, we want to provide

an insight into how practical hardware impairments in the UE’s TTD array affect the channel

estimation performance.
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Sound same direction Sound same direction

subcarriers subcarriers subcarriers

Figure 3.2: An illustration of sub-bands. In each sub-band, Msb subcarriers sound the entire

angular range [−π/2, π/2).

3.3 Proposed Channel Estimation Algorithm

In this section, we describe the design of the proposed frequency-dependent TTD combiners

w(t)[m], ∀t,m. Additionally, we develop a DSP algorithm that has a low computational

complexity despite the asymmetric design of precoders and combiners.

3.3.1 Design of UE TTD Codebook

Recently, the use of TTD codebooks for fast mmW beam training was explored in [YBC19,

BYL21]. The key idea was to leverage frequency-dependent TTD combiners and probe

all angular directions in the range [−π/2, π/2) at once. For example, in an OFDM-based

system, each angular direction can be probed by DFT beams associated with R uniformly

spaced subcarriers [BYL21]. Here we propose a similar TTD codebook design for channel

estimation. It is worth noting that the beam training codebook design in [YBC19] and

[BYL21] considered only a subset of subcarriers. On the other hand, the channel estimation

codebook in channel estimation must consider all Mtot OFDM subcarriers.

In an analog TTD array, the entire codebook of frequency-dependent DFT beams can

be created with a proper configuration of the delay and phase spacings. The delay spacing

controls how much the DFT beams are spread across the angular range, while the phase

spacing determines how much they are rotated. Here we propose a design where the delay

60



spacing ∆τ is time-invariant, while the phase spacing ∆ϕ(t) changes in each training frame to

allow different frequency-to-angle mapping. As in our previous work, the delay taps τn, ∀n,

are designed such that R subcarriers are mapped to each probed direction in any training

frame. The bandwidth is first divided into R sub-bands of Msb = Mtot/R subcarriers, as

illustrated in Fig. 3.2. Within each sub-band,Msb subcarriers should be associated withMsb

distinct DFT beams that probe the entire angular range. In [BYL21], we showed that such

DFT beams can be created by using ∆τ = R/BW, i.e., designing the delay taps as follows

τn = (n− 1)R/BW, n = 1, ..., NR. (3.10)

The taps in (3.10) ensure that all first subcarriers in R sub-bands probe the same direction,

all second subcarriers probe the same, etc. An example of the resulting UE codebook with

∆ϕ(t) = 0 in the t-th training frame is provided in Fig. 3.3(a). Note that if Msb > NR, the

codebook consists of spatial DFT beams oversampled by the factor of O =Msb/NR.

The UE codebook can be rotated in different training frames to provide additional diver-

sity and enable each subcarrier to sound multiple directions. This is achieved by changing

the phase spacing ∆ϕ(t) between the frequency-flat phase shifters. For a uniform rotation of

2π/T in each training frame, the spacing is designed as ∆ϕ(t) = (t− 1)2π/T . Consequently,

the phase taps are set as follows

ϕ(t)
n = (n− 1)(t− 1)2π/T, n = 1, ..., NR, t = 1, ..., T. (3.11)

Note that the phase taps in (3.11) are frequency-flat, i.e., they are applied to all sub-

carriers equally. An example of codebook rotations is illustrated in Fig. 3.3(b) for the first

subcarriers in all R sub-bands.

In the next subsection, we describe a DSP algorithm that leverages the designed frequency-

dependent TTD codebook to solve the sparse recovery problem in (3.9).
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(a) (b)

Figure 3.3: An example of the designed UE codebook with NR = 16, BW = 2GHz,

Mtot = 1024, R = 16, and T = 8. (a) Complete codebook with ∆ϕ(t) = 0 and O = 4.

(b) Rotations for first subcarriers in all sub-bands.

3.3.2 OMP-based DSP Algorithm

In previous work, a number of greedy algorithms were proposed to solve (3.9). In partic-

ular, researchers explored different variations of the Orthogonal Matching Pursuit (OMP)

[VAG17,RGV18], an algorithm that iteratively estimates the channel angles and gains. The

majority of OMP-related algorithms is based on per-subcarrier processing, which can impose

a significant computational burden. Here we propose a two-step OMP-based algorithm with

a lower computational complexity. In the first step, the algorithm iteratively identifies the

AoDs and AoAs using per-sub-band processing. With the identified channel support, the

algorithm estimates the channel gains in a single iteration in the second step.

Assuming that Msb subcarriers within each sub-band r have the same channel gains,

the problem in (3.9) can be defined for all R sub-bands. Let λr ∈ CQTQR be an L-sparse

vector of channel gains in the r-th sub-band. The vectors λr, ∀r, have the same support

as λ[m], ∀m. Let F(t) ∈ CMsb×NTNR be the sensing matrix for each of the R sub-bands in

the t-th training frame, defined as F(t) = [f (t)T[1], ..., f (t)T[Msb]]
T. Note that all sub-bands

can have a common sensing matrix F(t) because of the codebook design in Section 3.3.1,

which ensured that the subcarriers m = 1, ...,Msb, from the first sub-band (r = 1) sound
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the same directions as their counterparts from other sub-bands (r > 1). Let ñ
(t)
r ∈ CMsb

be the noise vector at the subcarriers in the r-th sub-band. Then, after T training frames

and vectorization, the signal measurement vector yr ∈ CTMsb in the r-th sub-band can be

expressed as

yr = FAλr + ñr, (3.12)

where F ∈ CTMsb×NTNR is F = [F(1)T, ...,F(T )T]T, ñr ∈ CTMsb is ñr = [ñ
(1)T
r , ..., ñ

(T )T
r ]T. For

conciseness, we introduce the effective measurement matrix Φ ∈ CTMsb×QTQR , defined as

Φ = FA. Similar as in (3.9), a sparse recovery problem for sub-band r can be formulated as

follows

min ∥λr∥1 s.t. ∥yr −Φλr∥22 < ϵ. (3.13)

The problem in (3.13) needs to be solved for all R sub-bands, given the corresponding

measurement vectors yr, ∀r. Previous work on CS-based mmW channel estimation suggested

that the required number of measurements to solve (3.13) with high probability scales as

L log(QTQR/L) when Φ is designed using pseudo-random beamforming vectors at both the

BS and UE [AEL14, BAN14,RVM12,MRM16]. Here, this scaling represents a loose lower

bound because the BS uses pseudo-random precoders, while the UE uses oversampled DFT

combiners. Finding a tighter lower bound requires further analysis, but this is out of the

scope of this chapter.

We propose an iterative OMP-based algorithm to solve (3.13). In each iteration, the

algorithm identifies the index of one non-zero value in λr, ∀r, i.e., AoD-AoA pair of one

propagation path, and then it refines all approximate channel gains jointly. In the first

iteration, an AoD-AoA pair index is estimated by jointly considering all R sub-bands and

calculating the correlation between Φ and residuals zr = yr, ∀r, as follows

c∗ = argmax
c

R∑
r=1

∣∣[ΦHzr
]
c

∣∣2 . (3.14)

Let the set Ω = {c∗} be the current estimate of the channel support. The approximated
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channel gains λr, ∀r, are then estimated using least squares in the following way

λ̂r =
(
[Φ]H:,Ω [Φ]:,Ω

)−1

[Φ]H:,Ω yr. (3.15)

The channel support Ω and gains λ̂r, ∀r, are used to subtract the contribution of the

estimated propagation path from the measurements yr, ∀r, and obtain the corresponding

measurement residuals for the next iteration. Mathematically, the residuals zr, ∀r, are

calculated as

zr = yr − [Φ]:,Ω λ̂r. (3.16)

The algorithm iterates until a stopping criterion is satisfied. Using a predetermined number

of iterations is impractical because the number of propagation paths in the channel is usually

unknown. Thus, we propose the use of a stopping criterion based on the average subcarrier

power E in the residuals zr, ∀r, calculated as follows [VAG17,RGV18]

E =
1

TMtot

R∑
r=1

∥zr∥22 . (3.17)

When power in (3.17) falls below the threshold ϵ, the algorithm stops. It was shown in

[RGV18] that the optimal threshold for algorithms based on per-subcarrier processing is

ϵ = σ2
N, assuming that the noise variance σ2

N is known at the receiver. Unlike in [RGV18],

our proposed algorithm yields approximate channel gains λr, ∀r, and consequently different

residuals zr, ∀r, than algorithms with per-subcarrier processing, which creates the need for

a different ϵ. At the subcarrier level, the current estimate of y[m] in (3.8) can be expressed

as

ŷ[m] = [Φ]Ψ,Ω λ̂r + [Φ]Ψ,Ω λe[m]︸ ︷︷ ︸
Approx. error

, (3.18)

where Ψ = {m′ | m′ = mod(m,Msb) + (t − 1)Msb, t = 1, ..., T}, λ̂r is the estimate of

channel gains in the corresponding sub-band, and λe[m] is the channel gain error vector at

the m-th subcarrier. For mathematical tractability, we treat λe[m] as a zero-mean random

Gaussian vector that is independent and identically distributed across different subcarriers.
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Algorithm 1 Proposed channel estimation algorithm

1: Inputs: y[m],∀m, yr,∀r, Φ, γ, σ2
N

2: Initialize: zr = yr,∀r, Ω = {∅}

3: Calculate: E = 1
TMtot

∑R
r=1 ∥zr∥

2
2

4: Calculate: Es =
1

TMtot

∑R
r=1 ∥yr∥

2
2 − σ2

N

5: Calculate: ϵ = γEs + σ2
N

6: while E > ϵ do

7: Estimate: c∗ = argmaxc
∑R

r=1

∣∣[ΦHzr
]
c

∣∣2
8: Update: Ω = Ω ∪ c∗

9: Estimate: λ̂r =
(
[Φ]H:,Ω [Φ]:,Ω

)−1

[Φ]H:,Ω yr, ∀r

10: Update: zr = yr − [Φ]:,Ω λ̂r, ∀r

11: Update: E = 1
TMtot

∑R
r=1 ∥zr∥

2
2

12: end while

13: Est.: λ̂[m] =
(
[Φ]HΨ,Ω [Φ]Ψ,Ω

)−1

[Φ]HΨ,Ω y[m], ∀m

14: where Ψ = {m′ | m′ = mod(m,Msb) + (t− 1)Msb, t = 1, ..., T}

15: Outputs: λ̂[m],∀m, Ω

Let σ2
A be the variance of each element in the approximation error [Φ]Ψ,Ω λe[m]. Then it is

straightforward to show that the stopping threshold should be set as ϵ = σ2
A + σ2

N. However,

the distribution of channels gains is unknown in general, which makes the estimation of σ2
A

challenging. Thus, we estimate σ2
A numerically in Section 3.4 as a fraction γ of the initial

useful signal power Es in a multipath channel, i.e., σ2
A = γEs, where Es is defined as

Es =
1

TMtot

R∑
r=1

∥yr∥22 − σ
2
N. (3.19)

After stopping, the iterative algorithm outputs the channel support estimate Ω and dis-

misses the approximate channel gain estimates λr, ∀r. Using Ω and (3.8), the channel gains

are estimated for each subcarrier in a single iteration as follows

λ̂[m] =
(
[Φ]HΨ,Ω [Φ]Ψ,Ω

)−1

[Φ]HΨ,Ω y[m], (3.20)
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where the set Ψ is defined as earlier. The proposed channel estimation algorithm is summa-

rized in Algorithm 1.

3.4 Comparison with State-of-the-Art

In this section, we assume a hardware impairment free setup, i.e., σT = 0s and σP =

0◦s, to evaluate the performance of the proposed OMP-based algorithm. We also compare

the proposed algorithm with related existing algorithms designed for phase shifter based

arrays, including the classical OMP algorithm in [VAG17] and Simultaneous Weighted OMP

(SW-OMP) algorithm proposed in [RGV18]. Unlike the classical OMP, which solves the

channel estimation problem for each subcarrier individually, the SW-OMP uses measurement

vectors at all subcarriers in each iteration to improve the angle and residual power estimation

accuracy. The three algorithms are compared in terms of required number of training frames,

channel estimation accuracy, and computational complexity.

We assume the carrier fc = 28 GHz, bandwidth BW = 1 GHz, Mtot = 1024 subcarriers,

and NT = 64 antennas at the BS. Both dictionaries ĀR and ĀT have QT = QR = 256

spatial responses. The UE assumes R = 16 sub-bands and designs its codebook accordingly.

The channel is assumed to have Ntap = 4 taps and L = 3 paths with identically distributed

gains gl ∼ CN (0, σ2
g), ∀l. The SNR is defined as SNR ≜ Lσ2

g/σ
2
N.

First, we assume NR = 16 and T = 35 and evaluate the performance of the proposed

algorithm for different values of the power fraction parameter γ ∈ [0.05, 0.15]. The numerical

results indicate that the channel estimation accuracy increases with higher γ and thus it

achieves the best performance with γ = 0.15. It is worth noting that the choice of γ is

significantly impacted by the path gains gl, ∀l. In certain non-line-of-sight scenarios, where

multiple paths have comparable path gains, a further increase of γ may severely decrease

the performance by causing the algorithm to miss some significant paths. Thus, for the

remainder of this chapter, we assume the power fraction of γ = 0.15 to avoid potential
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performance degradation.
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Figure 3.4: Performance of the algorithm for different sizes of the UE TTD array in terms

of: (a) NMSE and (b) post-estimation spectral efficiency η.

Next, we assume T = 35 and evaluate how the number of UE antennas NR affect the

performance of the proposed TTD-based channel estimation algorithm. Two metrics are

used in this study. The first one is the normalized mean square error (NMSE), which is

defined as

NMSE =

∑Mtot

m=1 ||Ĥ[m]−H[m]||2F∑Mtot

m=1 ||H[m]||2F
, (3.21)

where Ĥ[m] is a channel estimate at the m-th subcarrier. The second metrics is the average

spectral efficiency and it is defined as

η =
1

Mtot

Mtot∑
m=1

Km∑
k=1

log2

(
1 +
|ŵH

k [m]H[m]v̂k[m]|2

σ2
N

)
, (3.22)

where Km, ŵk[m], and v̂k[m] are the rank, left singular vector, and right singular vector of

the estimated matrix Ĥ[m], respectively. As shown in Fig. 3.4(a), the NMSE increases with

larger antenna arrays in all SNR regimes. The number of measurements taken by Φ does

not depend on NR, but only on T and Msb, which are fixed. However, a higher NR reduces

the beam width and oversampling factor O =Msb/NR of TTD combiners, which affects the

channel estimation accuracy. Despite a higher NMSE, larger antenna arrays result in a higher

post-estimation spectral efficiency due to more spatial degrees of freedom, as supported by

the results in Fig. 3.4(b).
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Figure 3.5: Comparison with state-of-the-art algorithms in terms of required number of train-

ing frames T for the same spectral efficiency η in different SNR scenarios: (a) SNR = −10

dB, (b) SNR = 0 dB, and (c) SNR = 10 dB.

A comparison between the proposed and state-of-the-art algorithms in terms the required

overhead is presented in Fig. 3.5, assuming that the UE has NR = 16 antennas. The results

indicate that the proposed algorithm requires a lower number of training frames T than the

state-of-the-art for the same post-estimation spectral efficiency. The main reason for this is

the fact that the measurement vector in the proposed algorithm has Msb elements in each

time frame due to per-sub-band processing. The difference in spectral efficiency is especially

noticeable with low overhead, where the proposed algorithm requires 5, 10, and 50 training

frames less than the SW-OMP in high, medium, and low SNR regimes, respectively. When

compared with the OMP algorithm, the the proposed approach demonstrates an even bigger

advantage in terms of the required overhead.

The three algorithms are compared in terms of the NMSE in Fig. 3.6(a). The perfor-

mance is evaluated for NR = 16, T = 35, and different SNR values. In medium/high SNRs,

the proposed algorithm outperforms the OMP and SW-OMP algorithms by 8 dB and 3 dB,

respectively. On the other hand, in low SNR values, the channel estimation accuracy of

the proposed algorithm deteriorates. Interestingly, even with a higher NMSE in low SNRs,

the proposed algorithm has a higher spectral efficiency than the state-of-the-art, as previ-

ously shown for SNR = −10 dB in Fig. 3.5(a). In order to explain this result and get a

better understanding of the spectral efficiency and NMSE curves, we further evaluate the
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Figure 3.6: Comparison with state-of-the-art algorithms in terms of the (a) NMSE of channel

estimation, (b) RMSE of angle estimation, and (c) RMSE of gain estimation, across different

SNR values.

angle estimation accuracy and gain estimation accuracy separately. The RMSE of angle es-

timation is defined jointly for AoDs and AoAs as

√
E
[
1
J

∑J
l=1(θ

(R)
l − θ̂

(R)
l )2 + (θ

(T)
l − θ̂

(T)
l )2

]
across J estimated paths. If an algorithm identifies more than 3 paths, the RMSE cal-

culation is done over the best 3 estimates. The RMSE of gain estimation is defined as√
E
[

1
LMtot

∑L
l=1

∑
m

∣∣∣Gl[m]− Ĝl[m]
∣∣∣2] across L paths. If an algorithm estimates less than

3 paths, the missing gain estimates are set to zero. The results of the angle and gain RMSEs

are presented in Fig. 3.6(b) and Fig. 3.6(c), respectively. The proposed TTD-based algo-

rithm has a significantly better angle estimation accuracy than the benchmark algorithms.

Due to per-sub-band based processing, the columns of the measurement matrix Φ in the

proposed algorithm belong to a much larger vector space than in the OMP and SW-OMP

algorithms, which consequently reduces the correlation among them and enables accurate

angle estimation in (3.14). Since the singular vectors of a sparse mmW channel look like nar-

row pencil beams, the optimal precoders and combiners can be closely estimated by finding

the best steering directions (channel AoDs and AoAs). Thus, due to more accurate angle

estimates, the proposed algorithm leads to a higher spectral efficiency than the OMP and

SW-OMP, as previously shown in Fig. 3.5. In terms of the RMSE of gain estimation, the

proposed algorithm has a good performance in medium/high SNR, but the error increases

in low SNRs. This increase explains why the overall NMSE of the proposed algorithm is
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higher than that of the SW-OMP in a low SNR regime in Fig. 3.6(a).

Table 3.1: Complexity of proposed and state-of-the-art OMP-based algorithms

Operation Complexity
P
ro
p
os
ed

Projection (j-th iter.) TpropMtot(QTQR − (j − 1))

Maximum proj. (j-th iter.) R(QTQR − (j − 1))

Gain calculation (j-th iter.) j3 + 2j2TpropMsb + jTpropMtot

Residual update (j-th iter.) TpropMtot

Average power (j-th iter.) TpropMtot

Subcarrier gains (no iter.) J3Msb + 2J2TpropMsb + JTpropMtot

O
M
P

fr
om

[V
A
G
17
]

Projection (j-th iter.) TompMtot(QTQR − (j − 1))

Maximum proj. (j-th iter.) Mtot(QTQR − (j − 1))

Gain calculation (j-th iter.) j3Mtot + 2j2TompMtot + jTompMtot

Residual update (j-th iter.) TompMtot

Average power (j-th iter.) TompMtot

S
W

-O
M
P

fr
om

[R
G
V
18
]

Projection (j-th iter.) Tsw-ompMtot(QTQR − (j − 1))

Maximum proj. (j-th iter.) Mtot(QTQR − (j − 1))

Gain calculation (j-th iter.) j3 + 2j2Tsw-omp + jTsw-ompMtot

Residual update (j-th iter.) Tsw-ompMtot

Average power (j-th iter.) Tsw-ompMtot

Due to the iterative nature of the proposed, OMP, and SW-OMP algorithms, it is impor-

tant to consider and compare their computational complexities. Table 3.1 summarizes the

results of the comparison. In all three algorithms, the iterative part consists of the following

steps: 1) the projection of the residuals on the measurement matrix, 2) search for the max-

imum projection, 3) gain calculation, 4) residual update, and 5) calculation of the average

residual power per subcarrier. As discussed earlier in this section, the proposed algorithm

requires a lower overhead than the OMP and SW-OMP, i.e., Tprop < Tsw-omp < Tomp, which
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makes its complexity lower than that of the benchmark algorithms in the iterative part of the

algorithm. The projection of the residuals on the measurement matrix is the most computa-

tionally expensive step. The proposed algorithm requires (QTQR− (j−1)) projections, each

with TpropMtot complex operations. Note that the complexity of the projections could be

significantly reduced at the cost of a higher overhead if a sequential CS-based estimation of

AoDs and AoAs was used. In that case, the complexity would roughly scale as O(QT +QR)

instead of O(QTQR). The search for the maximum projection scales with the number of

sub-bands R, instead of with the number of subcarriers as in the benchmark algorithms. A

lower overhead leads to a lower complexity of the residual updates in (3.16) and calculation

of the average residual power per subcarrier in (3.17). In both steps, the number of complex

operations scales with TpropMtot. The proposed algorithm uses a larger measurement matrix

Φ than the benchmark algorithms, which increases the complexity of the calculation of ap-

proximate gains in (3.15). Specifically, the algorithm requires j3 + 2j2TpropMsb + jTpropMtot

operations, which is better than in the OMP, but worse than in the SW-OMP algorithm.

After the iterative part of the algorithm, the OMP and SW-OMP terminate, while the pro-

posed algorithm needs to calculate the channel gains of J estimated paths for each subcarrier,

as defined in (3.20), which requires J3Msb + 2J2TpropMsb + JTpropMtot operations.

3.5 Impact of Hardware Impairments

In this section, we study the impact of hardware impairments on channel estimation perfor-

mance. Specifically, we first numerically evaluate the impact of the delay and phase errors in

the analog TTD array on the proposed algorithm. As a benchmark, we evaluate the impact

of phase errors on the OMP and SW-OMP algorithms, which were originally designed for

antenna arrays based on phase shifters. Then we linearize the received signal model with

hardware impairments and derive the CRLB for channel parameter estimators. Finally, we

propose and evaluate a gradient descent based refinement which improves the estimation
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Figure 3.7: Performance of the proposed algorithm in the presence of delay errors in terms

of: (a) NMSE and (b) spectral efficiency.

accuracy of the proposed algorithm.

3.5.1 Channel Estimation under Hardware Impairments

For evaluation of the impact of hardware impairments, we assumed NR = 16, T = 35, and

the same system and channel parameters as in Sec. 3.4. We first evaluate individual and

then joint impact of the delay and phase errors in the array.

Unlike the state-of-the-art algorithms which are designed for arrays based on phase

shifters, the performance of the proposed algorithm might be affected by the delay errors

in the TTD array. In Fig. 3.7, we considered delay errors with the standard deviation in

the range σT ∈ [0, 180]ps and numerically measured their impact on the channel estimation

accuracy and post-training spectral efficiency of the proposed algorithm. Although the con-

sidered delay errors may seem small compared to the overall delay introduced in the TTD

circuits, it is important to note two things: 1) The delay errors τ̃n, ∀n, with the standard

deviation σT ∈ [0, 180]ps are substantially higher than the resolution of the state-of-the-art

TTD hardware, which is in the order of 5ps [GSR19]; 2) Even small delay errors can impact
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Figure 3.8: Performance of the proposed and state-of-the-art algorithms in the presence of

phase errors in terms of: (a) NMSE for SNR = −10 dB, (b) NMSE for SNR = 0 dB, (c)

NMSE for SNR = 10 dB, (d) spectral efficiency for SNR = −10 dB, (e) spectral efficiency

for SNR = 0 dB, and (f) spectral efficiency for SNR = 10 dB.

the TTD combiners because the total phase change 2π(fm − fc)τ̃n induced by the delay

error τ̃n also depends on the considered bandwidth. As presented in Fig. 3.7(a), the channel

estimation accuracy decreases as the standard deviation σT increases regardless of the SNR.

However, the error is still relatively low (< 0dB) with significant delay errors, especially

in moderate to high SNRs. In Fig. 3.7(b), we present the results for the post-estimation

spectral efficiency. We can observe that even with large delay errors and degraded channel

estimation accuracy, the spectral efficiency mainly depends on the SNR regime.

Next, we evaluate the performance of the proposed and state-of-the-art algorithms in

the presence of phase errors in the UE’s array. Similar as with delay errors, we considered

different standard deviations σP of phase errors and numerically measured their impact on the

channel estimation accuracy and post-training spectral efficiency. The results are presented

in Fig. 3.8 for different SNR regimes. In all considered SNRs, the proposed algorithm sees a
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Figure 3.9: Performance of the proposed and state-of-the-art algorithms in the presence of

delay and phase errors in terms of: (a) NMSE for SNR = −10 dB, (b) NMSE for SNR = 0

dB, (c) NMSE for SNR = 10 dB, (d) spectral efficiency for SNR = −10 dB, (e) spectral

efficiency for SNR = 0 dB, and (f) spectral efficiency for SNR = 10 dB.

significant increase in channel estimation error as σP increases. This degradation translates

into a lower post-estimation spectral efficiency for σP > 10◦, σP > 20◦, and σP > 30◦,

at SNR = −10 dB, SNR = 0 dB, and SNR = 10 dB, respectively. Nevertheless, the

spectral efficiency of the proposed algorithm remains higher than that of the state-of-the-art

algorithms due to more accurate angle estimates, regardless of the SNR value.

In practice, antenna arrays are usually affected by multiple hardware impairments at

the same time. For this reason, we evaluate a joint impact of the delay and phase errors

on the channel estimation accuracy and post-estimation spectral efficiency of the proposed

and state-of-the-art algorithms. Compared to the results of individual errors in Fig. 3.7

and Fig. 3.8, we consider smaller ranges of values for σT and σP. The results are shown

in Fig. 3.9 for different SNR values. The performance of the state-of-the-art algorithms
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is independent of delay errors and thus decreases only with an increase in σP. On the

other hand, the performance of the proposed algorithm decreases when either of the errors

increases. Similarly as in the results for individual errors, the proposed algorithm results in

a higher spectral efficiency than the state-of-the-art, even though two errors affect the TTD

array simultaneously.

3.5.2 CRLB of Parameter Estimation

In this subsection, we derive the lower bound for the variance of the channel parameter

estimators in a LoS channel. We first derive the CRLB for AoD and AoA estimators and

then we derive the CRLB for channel phase estimators.

Linearization of received signal model: In the proposed algorithm, the angles are

estimated using the measurement model in (3.12) and per-sub-band processing. In a LoS

channel, the vector λr in (3.12) has only one complex non-zero element Gr. For mathematical

tractability, we assume that the gain Gr is normalized, i.e., Gr = ejψr , where ψr is a random

phase of the complex gain. Assuming an infinitely large dictionary A, the product Aλr can

be simplified to a∗
T(θ

(T)) ⊗ aR(θ
(R))ejψr , where θ(T) and θ(R) are the true AoD and AoA,

respectively. With this simplification, the model in (3.12) becomes

yr = x̄r(θ
(T), θ(R), ψr) + ñr, (3.23)

where x̄r(θ
(T), θ(R), ψr) = F(a∗

T(θ
(T))⊗ aR(θ

(R)))ejψr . In order to keep the notation simpler,

we use x̄r instead of x̄r(θ
(T), θ(R), ψr) for the rest of this section, without the risk of ambiguity.

The i-th element of the vector x̄r is given as follows

[x̄r]i =f (t)[m](a∗
T(θ

(T))⊗ aR(θ
(R)))ejψr

=(v(t)T ⊗w(t)H[m])(a∗
T(θ

(T))⊗ aR(θ
(R)))ejψr

=v(t)HaT(θ
(T))w(t)H[m]aR(θ

(R))ejψr (3.24)

where t = ⌈i/Msb⌉, m = (r − 1)Msb +mod(i,Msb).
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Random hardware impairments distort the combinerw(t)[m] and affect the received signal

[yr]i non-linearly, which complicates the CRLB derivation. Thus, our first objective is to

linearize the received signal model in (3.23). Using the expression for w(t)[m] in (3.2), result

in (3.24), τ̄n = τn + τ̃n, and ϕ̄n = ϕn + ϕ̃n, the received signal [yr]i can be expressed as

[yr]i = ejψrv(t)HaT(θ
(T))

NR∑
n=1

ej(2π(fm−fc)τn+ϕn)e−j(n−1)π sin(θ(R))ej(2π(fm−fc)τ̃n+ϕ̃n) + [ñr]i.

(3.25)

Assuming that standard deviations of hardware impairments are relatively small, we can

exploit the fact that exp(j(2π(fm−fc)τ̃n+ ϕ̃n)) ≈ 1+ j(2π(fm−fc)τ̃n+ ϕ̃n) to rewrite (3.25)

as follows

[yr]i = [xr]i + [x̃r]i + [ñr]i, (3.26)

where [xr]i and [x̃r]i are defined as follows

[xr]i = ejψrv(t)HaT(θ
(T))

NR∑
n=1

ej(2π(fm−fc)τn+ϕn)e−j(n−1)π sin(θ(R)), (3.27)

[x̃r]i = ejψrv(t)HaT(θ
(T))

NR∑
n=1

ej(2π(fm−fc)τn+ϕn)e−j((n−1)π sin(θ(R))+π/2)(2π(fm − fc)τ̃n + ϕ̃n).

(3.28)

The deterministic value [xr]i represents an impairment-free sample of the signal. On the

other hand, the complex random value [x̃r]i can be treated as a scaled coefficient of the

Fourier transform of 2π(fm − fc)τ̃n + ϕ̃n, ∀n, which represent random hardware impair-

ments. The BS uses pseudo-random precoders v(t) with quasi-omnidirectional beam patterns

and therefore we can assume that the term ejψrv(t)HaT(θ
(T)) does not change the variance,

but only the phase, of [x̃r]i. Since 2π(fm − fc)τ̃n + ϕ̃n, ∀n, are zero-mean Gaussian ran-

dom variables with variance 4π2(fm − fc)2σ2
T + σ2

P, it can be shown that [x̃r]i is a complex

Gaussian random variable with zero-mean and variance NR(4π
2(fm − fc)

2σ2
T + σ2

P), i.e.,
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[x̃r]i ∼ CN (0, NR(4π
2(fm− fc)2σ2

T + σ2
P)). This random variable is independent of the noise

[ñr]i. Thus, if we introduce a new variable [˜̃nr]i = [x̃r]i + [ñr]i for the sake of brevity, the

received signal can be expressed in a vector form as follows

yr = xr + ˜̃nr, (3.29)

where ˜̃nr ∼ CN (0, σ2ITMsb
), σ2 = NR(4π

2(fm − fc)
2σ2

T + σ2
P + σ2

N). We assume that the

elements of ˜̃nr are independent and identically distributed for mathematical convenience.

CRLB for AoD and AoA: Let θ = [θ(T), θ(R)]T. Based on the model in (3.29), the

likelihood function is defined as P (yr;θ) = exp(−∥yr − xr∥22 /σ2)/(πσ)TMsb . The log-

likelihood function is L(yr;θ) = log(P (yr;θ)). The CRLB for AoD and AoA estimators

is extracted from the inverse of the Fisher information matrix (FIM) Θ ∈ R2×2 defined in

the following way

Θ = E
[
∇θL(yr;θ) (∇θL(yr;θ))H

]
=

Θθ(T),θ(T) Θθ(T),θ(R)

Θθ(R),θ(T) Θθ(R),θ(R)

 , (3.30)

where ∇θL(yr;θ) is the gradient of L(yr;θ) with respect to the parameters in θ. By lever-

aging the fact that E[yryH
r ] = xrx

H
r + σ2ITMsb

and E[yryT
r ] = xrx

T
r , it can be shown that

the scalar Θp1,p2 for parameters p1 and p2 is calculated as follows

Θp1,p2 =
1

σ2

(
∂xH

r

∂p1

∂xr
∂p2

+
∂xT

r

∂p1

∂x∗
r

∂p2

)
=

2

σ2
R(∂x

H
r

∂p1

∂xr
∂p2

).

Therefore, the elements of Θ in (3.30) are

Θθ(T),θ(T) =
2

σ2

TMsb∑
i=1

∣∣v(t)HȧT(θ
(T))
∣∣2 ∣∣∣w(t)H

ideal[m]aR(θ
(R))
∣∣∣2 , (3.31)

Θθ(R),θ(R) =
2

σ2

TMsb∑
i=1

∣∣v(t)HaT(θ
(T))
∣∣2 ∣∣∣w(t)H

ideal[m]ȧR(θ
(R))
∣∣∣2 , (3.32)
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Θθ(T),θ(R) =
2

σ2
R(

TMsb∑
i=1

v(t)HaT(θ
(T))v(t)HȧT(θ

(T))w
(t)H
ideal[m]aR(θ

(R))w
(t)H
ideal[m]ȧR(θ

(R))), (3.33)

Θθ(R),θ(T) = Θθ(T),θ(R) , (3.34)

where the indices t and m depend on i as earlier, w
(t)
ideal is an impairment-free combiner,

and ȧT(θ
(T)) ∈ CNT and ȧR(θ

(R)) ∈ CNR are the first derivatives of the transmit and receive

spatial responses, respectively. The n-th element of ȧT(θ
(T)) is defined as [ȧT(θ

(T))]n =

−j(n−1)π cos(θ(T)) exp(−j(n−1)π sin(θ(T)))/
√
NT. The n-th element of ȧR(θ

(R)) is defined

in a similar way. Based on the results from (3.31)-(3.34), we can calculate the inverse of Θ

and determine the lower bounds for the variances of AoD and AoA estimators as follows

Var(θ̂(T)) ≥ [Θ−1]1,1, (3.35)

Var(θ̂(R)) ≥ [Θ−1]2,2. (3.36)

CRLB for channel phases: Unlike the angles, the channel gains at all subcarriers are

estimated using the measurement model in (3.8) and per-subcarrier processing. For math-

ematical tractability, we assume that the gain at the m-th subcarrier G[m] is normalized,

i.e., G[m] = ejψ[m]. With this assumption, estimation of the channel gain G[m] reduces to

estimation of the channel phase ψ[m]. Additionally, the assumption allows the same lin-

earization method to be applied to simplify the per-subcarrier received signal model. The

simplified model has the following form

y[m] = x[m] + ˜̃n[m], (3.37)

where x[m] ∈ CT is defined similarly as in (3.27), but on a subcarrier level, and ˜̃n[m] ∼

CN (0, σ2IT ), σ
2 = NR(4π

2(fm−fc)2σ2
T+σ

2
P+σ

2
N). Based on (3.37), the likelihood function is

P (y[m];ψ[m]) = exp(−∥y[m]− x[m]∥22 /σ2)/(πσ)T , while the log-likelihood is L(y[m];ψ[m]) =
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log(P (y[m];ψ[m])). The Fisher information for ψ[m] is given by

Θψ[m],ψ[m] =
2

σ2

∂xH[m]

∂ψ[m]

∂x[m]

∂ψ[m]

=
2

σ2

T∑
t=1

∣∣v(t)HaT(θ
(T))
∣∣2 ∣∣∣w(t)H

ideal[m]aR(θ
(R))
∣∣∣2 . (3.38)

Based on (3.38), the lower bound for the variance of channel phase is given as follows

Var(ψ̂[m]) ≥ Θ−1
ψ[m],ψ[m]. (3.39)

3.5.3 Gradient Descent for Parameter Refinement

Here we design a gradient descent based parameter refinement to improve the estimation

accuracy of the proposed algorithm.

In the iterative part of the proposed algorithm, the angles are estimated using a pre-

determined dictionary. Such an approach yields the so called ”on-grid” estimates, which

limit the estimation accuracy. Increasing the dictionary size, i.e., increasing QT and QR, to

improve the estimation accuracy is not a feasible solution because it comes at the cost of a

prohibitively large computational complexity. An alternative way to improve the accuracy

is to iteratively refine the initial estimates of channel parameters. A few refinement ap-

proaches were designed in the previous work, e.g., refinement based on the Newton method

in [MRM16]. We propose a gradient descent based refinement to improve the initial channel

estimates, including the AoD θ̂
(T)
0 , AoA θ̂

(R)
0 , and channel phase ψ̂0[m].

Given the simplified received signal model in (3.29), we define a cost function Cangle(θ), θ =

[θ(T), θ(R)]T, jointly for all R sub-bands as follows

Cangle(θ) =
1

2RTMsb

R∑
r=1

∥yr − xr∥22 . (3.40)

The first derivative of Cangle(θ) with respect to a certain parameter θ in θ is given by

∂Cangle(θ)
∂θ

= − 1

RTMsb

R∑
r=1

R((yr − xr)
H∂xr
∂θ

) (3.41)
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Figure 3.10: Comparison of the algorithms with and without parameter refinement against

the lower bounds in terms of the angle estimation accuracy.

Based on (3.41), we can define the j-th iteration of the gradient descent based refinement of

the AoD and AoA in the following way

θj−1 = [θ
(T)
j−1, θ

(R)
j−1]

T (3.42)

θ
(T)
j = θ

(T)
j−1 − µθ(T)

∂Cangle(θj−1)

∂θ(T)
(3.43)

θ
(R)
j = θ

(R)
j−1 − µθ(R)

∂Cangle(θj−1)

∂θ(R)
(3.44)

were µθ(T) and µθ(R) and the learning rates for the AoD and AoA updates, respectively.

The proposed refinement algorithm iterates over the steps (3.42)-(3.44) until the gradients

∂Cangle(θj−1)/∂θ
(T) and ∂Cangle(θj−1)/∂θ

(R) become sufficiently small, e.g., less than 10−3.

The updated angles are used for the refinement of channel phases. Unlike the angles which
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are common for all subcarriers, the channel phases need to be refined for each subcarrier

individually. With the system model in (3.37), we define a cost function Cphase(ψ[m]) for the

m-th subcarrier as follows

Cphase(ψ[m]) =
1

2T
∥y[m]− x[m]∥22 . (3.45)

The derivative of Cphase(ψ[m]) with respect to ψ[m] is

∂Cphase(ψ[m])

∂ψ[m]
= − 1

T
R((y[m]− x[m])H

∂x[m]

∂ψ[m]
) (3.46)

The j-th iteration in the channel phase refinement is

ψj[m] = ψj−1[m]− µψ
∂Cphase(ψj−1[m])

∂ψ[m]
. (3.47)

Similarly as with the angles, the algorithm iterates until the gradient becomes small.

The proposed refinement method increases the overall complexity of the estimation algo-

rithm. The most computationally expensive part is the calculation of the gradient. Let Jangle

and Jphase be the average number of iterations needed to refine the angles and channel phases,

respectively. Since the angle refinement considers all R sub-bands simultaneously, the num-

ber of additional complex operations it requires scales as O(2TMtotJangle). Similarly, the

number of operations needed for channel phase refinement scales as O(2TMtotJphase) since

the phase needs to be refined at all Mtot subcarriers.

Finally, we compare the performance of the proposed channel estimation algorithm with

and without gradient descent based refinement against the calculated CRLBs. In addition,

we include the Newton-based parameter refinement as a benchmark [MRM16]. We assume

a LoS channel, SNR ≜ 10 log10(1/σ
2), and the same system parameters as in the previous

simulations. The main metric is the RMSE and it is evaluated for different SNR values.

For each SNR point, the noise power is split such that 10% of it comes from 2π(fm − fc)τ̃n

(delay error), 10% of it from ϕ̃n (phase error), and 80% of it from the thermal noise. The

results for the angle and channel phase estimation are presented in Fig. 3.10 and Fig. 3.11,
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Figure 3.11: Comparison of the algorithms with and without parameter refinement against

the lower bounds in terms of the channel phase estimation accuracy.

respectively. In Fig. 3.10, we observe that the angle estimation accuracy of the proposed

algorithm without refinement is limited by the dictionary size, i.e., by the values QT and

QR. The proposed gradient descent refinement and the benchmark Newton refinement have

a similar performance. They both significantly improve the estimation accuracy and achieve

the AoD and AoA CRLBs. However, it is worth noting that the Newton refinement requires

the calculation of a Hessian and its inverse, which makes its computational complexity higher

than that of the proposed gradient descent. In Fig. 3.11, the algorithm without refinement

has a limited channel phase estimation accuracy. On the other hand, the algorithm with

the gradient descent or Newton refinement exploits the refined angle estimates and iterative

improvements of channel phase to achieve the corresponding CRLB.
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3.6 Conclusions

In this chapter, we proposed and studied a CS-based channel estimation algorithm for analog

TTD arrays that are affected by hardware impairments. The proposed algorithm was shown

to achieve a good channel estimation accuracy while keeping the required overhead and

computational complexity lower than in related benchmark approaches. Due to a particularly

high angle estimation accuracy, the algorithm leads to a higher post-estimation spectral

efficiency than the benchmark approaches. The proposed gradient descent refinement of

channel parameters enables the algorithm to reach the estimation accuracy lower bound.

The impact of time-invariant TTD hardware impairments was evaluated through extensive

numerical simulations and the proposed algorithm was shown to have a high tolerance to

the delay and phase errors.
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CHAPTER 4

User association and Low-Interference Beam

Scheduling

4.1 Introduction

In mmW systems, antenna arrays are commonly assumed to have a hybrid architecture with

multiple RF chains [HIX15], which enables both the BS and UE to steer more than one

beam at the time. Thus, the BS can exploit the hybrid architecture to serve multiple UEs

simultaneously. Similarly, the UE can leverage its RF chains to increase its achievable data

rate through the spatial multiplexing or connection with multiple BSs at the same time, which

is often referred to as multi-connectivity [3GP18]. However, with an increased densification

of mmW networks [GTM16] characterized by a small inter-site distance and a large number

of UEs, the inter- and intra-site interference cannot be neglected. In particular, the main-

lobe of highly directional beams can cause significant interference and prevent data-hungry

UEs from satisfying their rate requirements.

The interference problem can be abated and the overall network performance can be im-

proved by optimizing user association and/or beam scheduling in the network. A properly

designed user association and/or beam scheduling framework aims to maximize a specific

network utility function, while considering important service requirements, properties of

directional communication, and features of mmW transceivers. For example, some of the

important considerations include UEs’ heterogeneous rate requirements, inter- and intra-cell

interference, hybrid array architectures at the BSs and UEs. However, the existing opti-
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mization frameworks are often mathematically too complex and not comprehensive enough.

For example, the utility function is commonly non-convex and focused on maximization of

the network sum rate, while the set of constraints do not necessarily lower the interference

and capture important properties of mmW communication. In addition, with maximization

of the network sum rate, available serving beams are scheduled to the UEs with good chan-

nels, while other UEs’ rate requirements are often not satisfied. Therefore, there is a need

to design and mathematically formulate a new comprehensive framework that maximizes

the number of satisfied UEs, while suppressing the interference through intelligent beam

scheduling.

In the following subsections, we review recent work on mmW user association and resource

allocation, and then we highlight the key contributions of this chapter.

4.1.1 Prior Work

Prior work usually considered the problems of mmW user association [LY21,AV19,TAR21,

ZRX21] and resource allocation [HWN17, SQL19, LE21, QLS22, SW19, SX21, Hu18, ZSL19,

SPX19, AHC22, SCW22] separately. The frameworks that consider these problems jointly

provide higher flexibility in terms of the network performance optimization, but they have

rarely been studied [PWX21,BSC22b].

The work in [LY21] studied the user association problem in a network with enhanced mo-

bile broadband (eMBB) UEs and ultra-reliable low-latency communication (URLLC) UEs

that support multi-connectivity. The proposed framework aimed to maximize the rate of

eMBB UEs, while guaranteeing the reliability constraints for URLLC UEs. In [AV19] and

[TAR21], the authors proposed load balancing user association schemes and heuristic algo-

rithms to solve the optimization problems in polynomial time. The work in [ZRX21] proposed

a framework with a multi-criterion objective that minimizes both the link blockage probabil-

ity and the maximum load at the BSs. The authors studied different scalarization techniques

and demonstrated the advantage of considering multi-criterion over separate single-criterion
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objectives. However, optimization frameworks in [LY21,AV19,TAR21,ZRX21] do not con-

sider UEs’ rate requirements and explicit interference management on a network level using a

set of constraints. For example, interference suppression is performed only implicitly through

load balancing in [AV19] and [TAR21].

In mmW networks, resource allocation includes the distribution of beams (space-time

resources), frequencies, and power. A joint allocation of all of these resources represents

a very complex optimization problem. Thus, many previously proposed frameworks aimed

to either allocate only a subset of resources or provide a good sub-optimal solution to the

joint allocation. The work in [HWN17,SQL19,LE21] studied beam allocation in a scenario

with one BS that is equipped with a hybrid antenna array. Similarly, [QLS22] considered a

single-cell beam allocation and it proposed angle-based precoding to suppress the residual

interference. While the schemes in [HWN17, SQL19,LE21,QLS22] can eliminate the inter-

ference within the considered cell, the inter-cell interference remains a problem. In contrast,

the authors of [SW19] studied the inter-cell interference between two BSs, and they intro-

duced a low-complexity recursive algorithm that minimizes the number of inter-cell beam

collisions. A more general case of inter-cell interference suppression with multiple base sta-

tions was considered in [SX21] and [Hu18]. In both [Hu18], the scheduling framework gives

a higher priority to the UEs that cause lower inter-cell interference, i.e., that have higher

SINR. Available system resources can also be allocated sequentially [ZSL19,SPX19,AHC22],

e.g., the BSs first allocate beams and then frequencies and powers to all associated UEs. A

recent work in [SCW22] proposed a beam scheduling scheme that suppresses the interference

and minimizes the amount of unfulfilled UEs’ requirements. However, the network scenario

considered in [SCW22] is optimistic in terms of the beam interference since it assumes that

all UEs have only one RF chain and that they do not support spatial multiplexing and/or

multi-connectivity.

Optimization frameworks that jointly consider user association and beam scheduling in

dense mmW networks were rarely studied in previous work. In [PWX21], the authors de-
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signed a centralized algorithm to minimize the transmission time for all associated UEs.

The proposed algorithm has multiple steps, including the UE clustering based on location,

UE association and inter-cluster interference suppression, and power allocation. However,

similar to [SCW22], the assumed setup is optimistic in terms of the beam interference be-

cause single-antenna UEs do not support spatial multiplexing and/or multi-connectivity. In

addition, [PWX21] considers only LoS channels and neglects the impact of beam side-lobes

on interference. In our recent work in [BSC22b], we introduced a new framework for mmW

systems where both the BSs and UEs can steer multiple beams simultaneously. The pro-

posed framework aims to maximize the number of UEs with satisfied rate requirements while

minimizing the inter- and intra-cell main-lobe interference in the network. We also proposed

a low-complexity greedy algorithm to solve the corresponding optimization problem and

demonstrated that it outperforms the baseline user association approaches. Our previous

work, however, did not address several important questions, including the distribution of

any remaining serving beams, design of hybrid precoders and combiners to cancel the excess

interference, and optimization of power allocation in the network.

4.1.2 Contributions

Given the shortcomings of the previous work, there is a need to design a more comprehensive

optimization framework for joint user association and low-interference beam scheduling. In

this chapter, we extend the work in [BSC22b] and we propose a new multi-step framework

to optimize the network performance. The contributions can be summarized as follows:

• We propose a new framework where user association and beam scheduling are per-

formed jointly in a centralized sub-network. The framework consists of three sequen-

tial steps: Step 1 - maximization of the number of UEs with fully satisfied rate re-

quirements; Step 2 - maximization of the number of UEs with partially satisfied rate

requirements using the remaining serving beams; Step 3 - design of hybrid precoders
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and combiners, followed by power allocation on a sub-network level to boost the rates

of partially satisfied UEs.

• We mathematically formulate linear optimization problems in all three steps. This

includes the design of multi-criterion objectives using scalarization and the design of

constraints that consider UEs’ rate requirements and suppress the inter- and intra-cell

interference.

• We explain that the optimization problems in Step 1 and Step 2 are NP-hard, and then

we design a heuristic algorithm based on relaxation, rounding, and resource pruning

to obtain sub-optimal solutions. We also analyze the complexity of the proposed algo-

rithm and show that the solutions are obtained in polynomial time.

• Using realistic mmW channels generated in Quadriga [JRB19], we evaluate the impact

of the interference management on the average SINR per associated link. We also com-

pare the proposed optimization framework with existing baseline approaches, including

the naive greedy association and the maximum sum rate association. The comparison

is done in terms of average number of UEs with satisfied rate requirements, network

sum rate, and transmit power usage per BS.

4.1.3 Organization and Notation

The rest of the chapter is organized as follows. In Sec. 4.2, we present the system model

and problem formulation. Sec. 4.3 introduces a new joint optimization framework for user

association and beam scheduling. In Sec. 4.4, the proposed low-complexity algorithm is

described. The proposed framework is numerically evaluated and compared with benchmark

approaches in Sec. 4.5. Finally, Sec. 4.6 concludes the chapter and discusses the ideas for

future work.

Notation: Scalars, vectors, and matrices are denoted by non-bold, bold lower-case, and

bold upper-case letters, respectively. Sets are denoted by capital script letters. Hermitian
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transpose and inverse are denoted by (.)H and (.)−1, respectively.

4.2 System Model

In this section, we introduce the considered system model. Important notation is summarized

in Table 4.1.

We consider downlink communication in a mmW sub-network consisting of NBS BSs from

the set B and NUE UEs from the set U . The BSs are connected to a centralized processing

unit (PU) with high computational power. An example of the considered sub-network is

illustrated in Fig. 4.1. It is assumed that all downlink communication links operate at

the same carrier frequency within the bandwidth BW. Each BS is equipped with a linear

fully-connected hybrid array with NA
BS antennas and NRF

BS RF chains that enable steering of

up to NRF
BS serving beams simultaneously. Similarly, each UE has a linear fully-connected

hybrid array with NA
UE antennas and NRF

UE RF chains. The UEs can use their RF chains to

achieve spatial multiplexing and/or multi-connectivity. It is assumed that NRF
UE ≤ NRF

BS , so

there can be up to NRF
UE links between one BS-UE pair. We assume that each UE u has

already estimated the channel matrix between itself and EBS closest BSs, where EBS ≤ NBS.

Using the control links, the channel estimates are reported to the corresponding BSs, which

pass the estimates further to the PU. The channels and their estimates are assumed to be

constant over a period of T slots. During these T slots, each associated UE u must have its

specific data rate requirement Ru satisfied.

Let Fb,t ∈ CNA
BS×N

RF
BS be a precoding matrix with normalized columns that the BS b uses

to serve its UEs in the time slot t. Given the hybrid architecture at each BS, the precoding

matrix is calculated as Fb,t = Fb,t
RFF

b,t
BB, where Fb,t

RF ∈ CNA
BS×N

RF
BS is an RF precoding matrix

consisting of normalized orthogonal DFT beams that correspond to different links and Fb,t
BB ∈

CNRF
BS ×NRF

BS is a baseband precoding matrix. Similarly, let Wu,t ∈ CNA
UE×N

RF
UE be a combining

matrix with normalized with columns that the UE u uses to combine signal from one or
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Sub-network

BS
UE

PU

Figure 4.1: An example of the considered sub-network with NBS = 3 centralized BSs and

NUE = 12 UEs. The sub-network can have irregular shape with different inter-site distances.

more BSs in the time slot t. The combining matrix is given as Wu,t = Wu,t
RFW

u,t
BB, where

Wu,t
RF ∈ CNA

UE×N
RF
UE is a matrix of normalized RF DFT combiners and Wu,t

BB ∈ CNRF
UE×NRF

UE is a

baseband combining matrix. Let the matrix Hu,b ∈ CNA
UE×N

A
BS represent a channel estimate

between the BS b and UE u. Using the estimate Hu,b and DFT beamforming matrices, the

PU can determine NRF
UE distinct pairs (du,b,l

BS , du,b,l
UE ), where du,b,lBS ∈ CNA

BS , l = 1, ..., NRF
UE , are

candidate RF DFT precoders and du,b,lUE ∈ CNA
UE , l = 1, ..., NRF

UE , are candidate RF combiners

between b and u through digital processing. Importantly, we note that du,b,lBS and du,b,lUE remain

the same for all T slots because it is assumed that the channel does not change. The pairs

of candidate DFT beams (du,b,l
BS , du,b,l

UE ) define a set L of NRF
UE independent links between b

and u. The complexity of digitally estimating all candidate links in the sub-network scales

as O(NUEN
RF
UEEBSN

A
UEN

A
BS). With knowledge of all links, the PU can identify the interfering
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(completely overlapping) DFT beam candidates at all BSs and UEs and then avoid scheduling

them in the same time slot.

4.2.1 Pessimistic Estimates of Link Capacities

In dense mmW networks, link capacities are affected by the inter- and intra-cell interfer-

ence. Before the process of user association and beam scheduling, the PU does not know

which candidate links (beams) will be selected for communication. Thus, it is not possible

to create the hybrid precoding and combining matrices, optimize power allocation, calculate

interference power on each link, and determine the true link capacities in advance. Moreover,

embedding the calculation of the link capacities in the user association and beam schedul-

ing process makes the corresponding optimization problem non-convex and hard to solve.

Recent work in [SCW22] considered an alternative approach where pessimistic estimates of

interference powers are pre-calculated for all links. This enables the design of a convex and

less complex optimization problem. Here we adopt a similar approach in which the PU uses

the candidate RF precoders and combiners to estimate pessimistic interference powers and

link capacities before user association and beam scheduling. Unlike in [SCW22], pessimistic

interference power estimates here account for interference from EBS BSs. The case when

EBS = NBS leads to the most pessimistic estimates of interference powers and capacities,

but it also ensures that all associated UEs have their rate requirements certainly satisfied.

Importantly, after user association and beam scheduling, the difference between the true

capacities and pessimistic capacity estimates can be determined and exploited when power

allocation is optimized in the sub-network, as discussed later in Sec. 4.3.3.

Let du,b,lBS and du,b,lUE be the RF DFT beams that correspond to the l-th link between b and

u. Assuming that the transmit power budget PT is split equally among NRF
BS RF chains, an

estimate of the corresponding link capacity ĉu,b,l is given as

ĉu,b,l = BW log2

(
1 +
|du,b,lHUE Hu,bd

u,b,l
BS |2

Îu,b,l + PN

PT

NRF
BS

)
, (4.1)
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where PN is the post-combining noise power. The noise power is defined as PN = NA
UEBWN0,

where N0 is the noise power spectral density. If the channel between the BS b and UE u

is not estimated, the capacity is ĉu,b,l = 0, ∀l. Note that ĉu,b,l is the same in all slots. The

interference power Îu,b,l in (4.1) is calculated as

Îu,b,l =
∑
b′,u′,l′

|du,b,lHUE Hu,b′d
u′,b′,l′

BS |2 PT

NRF
BS

(4.2)

where u′ ̸= u, b′ goes over EBS BSs that are known the UE u, and l′ goes over all links that

belong to the UE u′ and that are not conflicted with the link l. Thus, (4.2) accounts for

the side-lobe interference from EBS BSs and their candidate DFT beams that do not overlap

with du,b,lBS . The reason for not including overlapping beams will be clear in the following

section, when we design a framework that suppresses the main-lobe interference.

4.2.2 Problem Formulation

Given the described system model, we want to design a sequential multi-step framework for

joint user association and beam scheduling to achieve the following:

• The number of fully satisfied UEs is maximized.

• The number of partially satisfied UEs is maximized.

• Inter- and intra-cell interference is suppressed.

• Power allocation is optimized on a sub-network level.

4.3 Proposed Optimization Framework

The existing frameworks for user association and/or beam scheduling are often based on

single-criterion objectives that maximize the network sum rate. With such objectives, the

available system resources are mainly allocated to the UEs that experience very good chan-

nels and many UEs may be left out with unsatisfied rate requirements.
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We address this issue by proposing a new three-step optimization framework for joint

user association and low-interference beam scheduling in dense mmW networks. In the first

step, the framework maximizes the number of UEs with fully satisfied rate requirements.

In the second step, if there are any remaining resources, they are distributed such that the

number of UEs with partially satisfied rate requirements is maximized. Finally, in the last

step, hybrid precoders and combiners are designed and power allocation is optimized on all

allocated communication links such that the partially satisfied UEs can further boost their

rates.

In the following subsections, we mathematically formulate all three steps of the proposed

framework.

4.3.1 Step 1 - Maximum Number of Fully Satisfied UEs

We first design a set of constraints that suppress the interference and consider UEs’ rate

requirements, and then we model a multi-criterion objective function that maximizes the

number of satisfied UEs using a minimal number of beams.

Let T be a set of of T time slots over which the scheduling is done. Let [1] be a

common label for all variables in Step 1. Let s[1] be a vector of binary association variables

s
[1]
u , u ∈ U , with s[1]u being 1 if the rate requirement of the UE u is satisfied over the period of

T slots, and 0 otherwise. Let x[1] be a vector of TNUEN
RF
UENBS binary association variables

x
[1]
u,b,l,t, u ∈ U , b ∈ B, l ∈ L, t ∈ T , for all links in the network, with x

[1]
u,b,l,t being 1 if the UE

u is served by the BS b using the link l in the time slot t, and 0 otherwise.

Due to the hybrid array architecture, each UE u can combine up to NRF
UE beams simulta-

neously in any time slot t. Given the variables x
[1]
u,b,l,t, ∀u, b, l, t, this constraint is expressed

as

(C-1.1) :
∑
b,l

x
[1]
u,b,l,t ≤ NRF

UEs
[1]
u , ∀u ∈ U , t ∈ T . (4.3)

The variable su in (C1) ensures that the beams are not allocated to the UEs whose rates
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cannot be satisfied. The constraint (C-1.1) implies that a UE can get up to TNRF
UE links over

T time slots.

Similarly, each BS can steer up to NRF
BS beams simultaneously in any time slot t, which

is expressed as

(C-1.2) :
∑
u,l

x
[1]
u,b,l,t ≤ NRF

BS , ∀b ∈ B, t ∈ T . (4.4)

With EBS known BSs, there are EBSN
RF
UE RF DFT beam candidates that can be used to

serve a UE in any time slot. As explained in Sec. 4.2, the PU can identify the conflicted

DFT beams at each BS. In particular, for each u ∈ U , the PU can create an interfering

group, i.e., a set Iu of the UEs that have at least one DFT beam candidate that is common

with the candidate beams of the UE u. An illustration of an interfering group is presented

in Fig. 4.2. Let u′, u′ ̸= u, be a UE from the set Iu. Let the BS index b′ and the link index

l′ correspond to a DFT beam candidate that u′ has in common with u. Highly directional

interference from the BSs can be suppressed by not allowing DFT beam candidates of the

UE u to be used by both the UE u and the UE u′ in the same time slot t. To define this

constraint mathematically, we introduce a new vector of binary association variables a[1],

whose element a
[1]
u,u′,t is 1 if the UE u′ is allocated at least one of the DFT beam candidates

of the UE u in the time slot t, and 0 otherwise. Given the variables x
[1]
u,b,l,t and indices b′ and

l′, the variable a
[1]
u,u′,t is modeled as a logical OR using the following set of constraints:

(C-1.3) : a
[1]
u,u′,t ≤

∑
b′,l′

x
[1]
u′,b′,l′,t, ∀u ∈ U , u

′ ∈ Iu, t ∈ T , (4.5)

(C-1.4) : a
[1]
u,u′,t ≥ x

[1]
u′,b′,l′,t, ∀u ∈ U , u

′ ∈ Iu, t ∈ T , b′, l′, (4.6)

(C-1.5) : 0 ≤ a
[1]
u,u′,t ≤ 1, ∀u ∈ U , u′ ∈ Iu, t ∈ T . (4.7)

Therefore, a constraint that suppresses the interference from the BSs can be defined as

follows

(C-1.6) : a
[1]
u,u,t + a

[1]
u,u′,t ≤ 1, ∀u ∈ U , u′ ∈ Iu, u ̸= u′, t ∈ T . (4.8)
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BS PU

UE 

Figure 4.2: An illustration of the interfering group Iu with 4 UEs. The UE u has two DFT

beam candidates from each BS. The red, blue, and magenta UEs have at least one DFT

beam candidate in common with the UE u.

The PU can also identify the conflicted RF DFT beam candidates at each UE and it

can use this information to suppress the combining interference in any time slot t. Let Ju

be a set of DFT beam candidates that correspond to more than one link of the UE u. Let

an arbitrary beam from Ju correspond to the links defined by the indices b′′ and l′′. The

combining interference can be avoided by allowing only one link to use the beam, which is

expressed as follows

(C-1.7) :
∑
b′′,l′′

x
[1]
u,b′′,l′′,t ≤ 1, ∀u ∈ U , t ∈ T . (4.9)

Note that the total number of constraints in (C-1.3) - (C-1.7) depends on the number of

conflicted beams at the BSs and UEs, and it may change from one association to another
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depending on the network density and topology.

Each associated UE u needs to have its rate requirement Ru satisfied. This constraint

can be expressed using the pessimistic capacity estimates in (4.1) as follows

(C-1.8) :
∑
b,l,t

ĉu,b,lx
[1]
u,b,l,t ≥ Rus

[1]
u , ∀u ∈ U . (4.10)

Under the described constraints, our multi-criterion objective is to maximize the number

of UEs with fully satisfied rate requirements using a minimal number of serving beams. If

UEs have low rate requirements and all of them can be fully satisfied, reducing the number of

serving beams reduces the overall side-lobe interference in the network. On the other hand,

if UEs have high rate requirements and only a few of them can be fully satisfied, a minimal

number of serving beams ensures that as many beams as possible are left for the UEs in

Step 2. The number of UEs with fully satisfied rate requirements and the number of serving

beams can be expressed as
∑

u s
[1]
u and

∑
u,b,l,t x

[1]
u,b,l,t, respectively. Thus, the objective can

be formulated as follows

max
s[1],x[1],a[1]

∑
u

s[1]u − λ1
∑
u,b,l,t

x
[1]
u,b,l,t. (4.11)

The parameter λ1 can be obtained through scalarization [BV04] and its proper design in

(4.11) is given by the following proposition.

Proposition 1. The parameter λ1 =
1

K1+1
, where K1 = NUE(TN

RF
UE −1)+1 if TNUEN

RF
UE ≤

TNBSN
RF
BS , and K1 = TNBSN

RF
BS otherwise, guarantees that the number of fully satisfied UEs

is maximized using a minimal number of serving beams.

Proof. See Appendix B.1.

Finally, with the designed constraints and multi-criterion objective, the linear optimiza-

96



tion problem in Step 1 can be formulated as follows

max
s[1],x[1],a[1]

∑
u

s[1]u − λ1
∑
u,b,l,t

x
[1]
u,b,l,t

s.t. (C-1.1)− (C-1.8),

s[1]u , x
[1]
u,b,l,t, a

[1]
u,u′,t ∈ {0, 1}, ∀u, u′, b, l, t.

(4.12)

The total number of optimization variables in (4.12) is V1 = NUE+TNUEN
RF
UENBS+T

∑
u |Iu|.

This number can be reduced to V1 = NUE + TNUEN
RF
UEEBS + T

∑
u |Iu| if only non-zero-

capacity links are considered.

4.3.2 Step 2 - Maximum Number of Partially Satisfied UEs

In Step 1, the UEs whose rate requirements are not fully satisfied are not associated with any

BS. These UEs are allocated the remaining resources in Step 2 in a fair way, proportional

to their rate requirements. This can be achieved using a similar optimization problem as in

Step 1, but the set of constraints needs to be updated based on the solutions s[1], x[1], and

a[1]. Let s[2], x[2], and a[2] be vectors of Step 2 variables with the same definition as their

counterparts from Step 1. Clearly, the number of variables in Step 2 is the same as in Step

1, i.e., V2 = V1.

In Step 2, the constraint (C-1.1) needs to be updated to ensure that that the fully satisfied

UEs from Step 1 are not given any additional serving beams as follows

(C-2.1) :
∑
b,l

x
[2]
u,b,l,t ≤ (1− s[1]u )NRF

UEs
[2]
u , ∀u ∈ U , t ∈ T . (4.13)

After Step 1, the number of available beams at the BSs, defined in (C-1.2), is updated

in the following way

(C-2.2) :
∑
u,l

x
[2]
u,b,l,t ≤ NRF

BS −
∑
u,l

x
[1]
u,b,l,t, ∀b ∈ B, t ∈ T . (4.14)

The UEs in Step 2 can be served only by the beams that do not violate the precoding

interference suppression achieved in Step 1. Therefore, the variables a
[2]
u,u′,t in Step 2 need to
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account the beams that were already allocated in Step 1. This is achieved by updating the

constraints (C-1.3) and (C-1.4):

(C-2.3) : a
[2]
u,u′,t ≤

∑
b′,l′

x
[2]
u′,b′,l′,t +

∑
b′,l′

x
[1]
u′,b′,l′,t, ∀u ∈ U , u

′ ∈ Iu, t ∈ T , (4.15)

(C-2.4) : a
[2]
u,u′,t ≥ x

[2]
u′,b′,l′,t + x

[1]
u′,b′,l′,t, ∀u ∈ U , u

′ ∈ Iu, t ∈ T , b′, l′. (4.16)

The constraints (C-1.5) - (C-1.7) do not require an update, i.e., (C-2.5) - (C-2.7) are the

same as (C-1.5) - (C-1.7).

In Step 2, the UEs cannot have their rate requirements fully satisfied. However, each

associated UE is required to have at least a fraction ϵ of its requirement satisfied, where

0 < ϵ < 1. Mathematically, the rate constraint is expressed as

(C-2.8) :
∑
b,l,t

ĉu,b,lx
[2]
u,b,l,t ≥ ϵRus

[2]
u , ∀u ∈ U . (4.17)

The constraint based on a partial rate satisfaction makes the distribution of the remaining

resources proportional to the UEs’ rate requirements.

Similar as in Step 1, we design a multi-criterion objective function whose primary goal is

to maximize the number of partially satisfied UEs. Since the UEs are only partially satisfied,

we want to at least boost their data rates as much as possible. For this reason, the objective’s

secondary goal is to schedule the beams such that the sum rate of partially satisfied UEs is

maximal. The objective is defined as

max
s[2],x[2],a[2]

∑
u

s[2]u + λ2
∑
u,b,l,t

ĉu,b,lx
[2]
u,b,l,t. (4.18)

The parameter λ2 is given by the following proposition.

Proposition 2. For ĉu,b,l(1 − x
[1]
u,b,l,t) > 0, ∀u, b, l, t, let cmin = minu,b,l,t ĉu,b,l(1 − x

[1]
u,b,l,t)

and cmax = maxu,b,l,t ĉu,b,l(1 − x
[1]
u,b,l,t). The parameter λ2 = 1

K2+1
, where K2 = (NUE −

1)TNRF
UEcmax − NUEcmin if TNUEN

RF
UE ≤ TNBSN

RF
BS , and K2 = TNBSN

RF
BS cmax otherwise,
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guarantees that the number of partially satisfied UEs is maximized and that the sum rate of

partially satisfied UEs is maximal.

Proof. See Appendix B.2.

The optimization problem in Step 2 is then formulated as

max
s[2],x[2],a[2]

∑
u

s[2]u + λ2
∑
u,b,l,t

ĉu,b,lx
[2]
u,b,l,t

s.t. (C-2.1)− (C-2.8),

s[2]u , x
[2]
u,b,l,t, a

[2]
u,u′,t ∈ {0, 1}, ∀u, u′, b, l, t.

(4.19)

4.3.3 Step 3 - Hybrid Beamformers and Power Allocation

The number of links scheduled in Step 1 and Step 2 is lower or equal than the initial number

of links candidates, i.e,
∑

u,b,l,t(x
[1]
u,b,l,t + x

[2]
u,b,l,t) ≤ TNUEN

RF
UEEBS. Additionally, since the PU

knows all scheduled links in the sub-network and the corresponding DFT beam candidates,

it can determine the RF precoding matrices Fb,t
RF, ∀b, t, and the RF combining matrices

Wu,t
RF, ∀u, t. Specifically, the columns of the RF precoding matrix Fb,t

RF are vectors du
′,b,l′

BS ,

where u′ and l′ go over the UEs and links that the BS b is serving in the time slot t. The matrix

Wu,t
RF is determined in a similar way. The PU can then use RF precoding and combining

matrices to calculate the matrices Fb,t
BB, ∀b, t, W

u,t
BB, ∀u, t, Fb,t, ∀b, t, and Wu,t, ∀u, t, as

explained in Appendix B.3. The digital precoding matrices Fb,t
BB, ∀b, t, and digital combining

matrices Wu,t
BB, ∀u, t, are designed to remove any excess side-lobe interference after RF

precoding and combining. Therefore, with a lower number of links and digital precoders

and combiners, the true interference Iu,b,l,t experienced by the l-th link between the BS b

and UE u in the time slot t is lower or equal than the interference Îu,b,l in (4.2). Note that

the true interference Iu,b,l,t can vary over different time slots because it depends on currently

scheduled beams. A lower interference implies that the true time-varying link capacity cu,b,l,t

is larger or equal than the pessimistic capacity ĉu,b,l in (4.1) used for user association and
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beam scheduling. This gap between the capacities provides the opportunity for optimization

of power allocation on a sub-network level in every time slot. In our framework, the main

objective of power allocation is to reduce the amount of power that is allocated to the fully

satisfied UEs, while increasing the amount power that is allocated to the partially satisfied

UEs. With a proper set of constraints, such an objective ensures that the fully satisfied UEs

are provided the minimum required power, while the partially satisfied UEs are provided

with the opportunity to boost their data rates as much as possible. It is important to

note that the optimization of power allocation is possible only when the PU can calculate

the interference for all BS-UE pairs, i.e., when EBS = NBS. Additionally, to simplify the

notation in this subsection, we assume that the indices u, b, l, and t go over the used links

(non-zero values in x
[1]
u,b,l,t and x

[2]
u,b,l,t) only.

Let γ̂u,b,l be the pessimistic SINR on the l-th link between the BS b and UE u as defined

in (4.1), i.e., γ̂u,b,l = |du,b,lHUE Hu,bd
u,b,l
BS |2PT/((Îu,b,l+PN)N

RF
BS ). Let pu,b,l,t, fu,b,l,t, and wu,b,l,t be

the allocated power, hybrid precoder, and hybrid combiner on the l-th link between the BS

b and UE u in the time slot t. Let gu,b,l,t = |wH
u,b,l,tHu,bfu,b,l,t|2 be the effective beamforming

gain for the considered link. Let gu,b,l,tu′,b′,l′,t
= |wH

u,b,l,tHu,b′fu′,b′,l′,t|2 be the effective beamforming

gain for the interfering link l′ between the BS b′ and UE u′, u′ ̸= u, in the same time slot t.

Each BS has a limited power budget PT. Thus, a sum of allocated powers must satisfy

the following constraint

(C-3.1) :
∑
u,l

pu,b,l,t ≤ PT, b ∈ B, t ∈ T . (4.20)

Clearly, the individual powers are constrained as follows

(C-3.2) : 0 ≤ pu,b,l,t ≤ (x
[1]
u,b,l,t + x

[2]
u,b,l,t)PT, ∀u ∈ U , b ∈ B, l ∈ L, t ∈ T . (4.21)

The use of x
[1]
u,b,l,t and x

[2]
u,b,l,t in (C-3.2) ensures that only selected links can have a non-zero

power allocation.

In optimization of power allocation, the rate constraints have to remain satisfied for

all associated UEs. For a fully satisfied UE u, the rate constraint can be mathematically
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expressed using the true capacities cu,b,l,t, ∀u, b, l, t, as∑
b,l,t

cu,b,l,t ≥ Ru. (4.22)

After diving both sides by BW, the constraint becomes

∑
b,l,t

log2

(
1 +

gu,b,l,tpu,b,l,t∑
u′,b′,l′ g

u,b,l,t
u′,b′,l′,tpu′,b′,l′,t + PN

)
≥ Ru

BW
. (4.23)

The constraints for partially satisfied UEs are formulated in a similar way after accounting

for the fraction ϵ. The left-hand side of (4.23) is a highly non-linear function of the powers

pu,b,l,t, ∀u, b, l, t. Since we aim to express power allocation as a linear optimization problem,

(4.23) cannot be used as a constraint. The following proposition defines a set of linear

constraints that represent a sufficient condition to satisfy (4.23).

Proposition 3. The constraints defined as

gu,b,l,tpu,b,l,t − γ̂u,b,l
∑
u′,b′,l′

gu,b,l,tu′,b′,l′,tpu′,b′,l′,t ≥ γ̂u,b,lPN, ∀u, b, l, t.

represent a sufficient condition to satisfy (4.23).

Proof. Consider the following inequalities for the UE u∑
b,l,t

cu,b,l,t
BW

(a)

≥
∑
b,l,t

ĉu,b,l
BW

(b)

≥ Ru

BW

(
or

ϵRu

BW

)
. (4.24)

The inequality (b) is the data rate constraint defined in (C-1.8) (or (C-2.8)) and thus it holds

true for the associated UE. The inequality (a) comes as a consequence of having a lower

number of scheduled than candidate links and applying digital precoders and combiners to

the scheduled beams, as discussed earlier. To provide mathematical guarantees that (a)

holds true, it is sufficient to ensure that the true link capacities of the UE u are larger or

equal than their pessimistic counterparts, i.e., cu,b,l,t ≥ ĉu,b,l, ∀u, b, l, t, or equivalently

log2

(
1 +

gu,b,l,tpu,b,l,t∑
u′,b′,l′ g

u,b,l,t
u′,b′,l′,tpu′,b′,l′,t + PN

)
≥ log2(1 + γ̂u,b,l), ∀u, b, l, t (4.25)
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Since log() is a monotonic function, (4.25) can be written as

gu,b,l,tpu,b,l,t∑
u′,b′,l′ g

u,b,l,t
u′,b′,l′,tpu′,b′,l′,t + PN

≥ γ̂u,b,l, ∀u, b, l, t (4.26)

After reorganizing (4.26), we get

(C-3.3) : gu,b,l,tpu,b,l,t − γ̂u,b,l
∑
u′,b′,l′

gu,b,l,tu′,b′,l′,tpu′,b′,l′,t ≥ γ̂u,b,lPN, ∀u, b, l, t, (4.27)

which concludes the proof.

Given the power constraints, we aim to minimize the amount of power that is allocated

to the fully satisfied UEs. At the same time, we want to maximize the amount of power that

is allocated to the partially satisfied UEs to boost their achievable rates. Thus, with p being

a vector of optimization variables pu,b,l,t, ∀u, b, l, t, the objective can be defined as follows

max
p

−
∑
u∈U1

∑
b,l,t

pu,b,l,t +
∑
u∈U2

∑
b,l,t

pu,b,l,t (4.28)

In (4.28), U1 and U2 denote the sets of the UEs associated in Step 1 and Step 2, respectively.

Finally, the optimization problem can be formulated as

max
p

−
∑
u∈U1

∑
b,l,t

pu,b,l,t +
∑
u∈U2

∑
b,l,t

pu,b,l,t

s.t. (C-3.1)− (C-3.3)

(4.29)

Based on the objective function and constraint (C-3.3), (4.29) aims to reduce the amount

of power that is allocated to the fully satisfied UEs until their true link capacities become

equal to the pessimistic capacities which were used for user association and beam scheduling.

Conversely, the partially satisfied UEs are provided with more power and their rates are

improved. It is important to note that certain partially satisfied UEs may be allocated enough

transmit power to have their rate requirements fully satisfied. The number of variables in

(4.29) is equal to the number of selected links, i.e., V3 =
∑

u,b,l,t(x
[1]
u,b,l,t + x

[2]
u,b,l,t).

Power allocation in (4.29) is a linear optimization problem with continuous variables

pu,b,l,t, ∀u, b, l, t, and it can be solved in polynomial time using interior point methods. On
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the other hand, the optimization problems in Step 1 and Step 2 are NP-hard combinatorial

problems. In the next section, we propose an algorithm based on relaxation, rounding, and

resource pruning to solve these problems in polynomial time.

4.4 Proposed Algorithm for Step 1 and Step 2

The optimization problems in (4.12) and (4.19) are binary integer programs (BIP), which

are known to be NP-hard. Existing optimization solvers, including Gurobi [Gur22] and

Mosek [MOS22], rely on branch and bound techniques to solve BIPs. However, the worst

case complexity of these techniques scales exponentially, i.e., they may require an exhaustive

search across all permutations of binary optimization variables to find the optimal solution.

In a scenario with a few BSs and a moderate number of UEs and time slots, the exhaustive

search has a prohibitive computational complexity. In this section, we proposed a low-

complexity algorithm based on relaxation, rounding, and resource pruning to sub-optimally

solve the BIPs in Step 1 and Step 2.

We first relax the Step 1 BIP in (4.12) and formulate the following program with contin-

uous optimization variables

max
s[1],x[1],a[1]

∑
u

s[1]u − λ1
∑
u,b,l,t

x
[1]
u,b,l,t

s.t. (C-1.1)− (C-1.8),

0 ≤ s[1]u , x
[1]
u,b,l,t, a

[1]
u,u′,t ≤ 1, ∀u, u′, b, l, t.

(4.30)

The relaxed linear optimization problem can be solved in polynomial time using interior

point methods [RTV05]. However, the solution to (4.30) is fractional, meaning that the

elements of s[1], x[1], and a[1] of the optimization variables are not necessarily equal to 0 or

1. For example, the rate requirement of the UE u that experiences good channels can be

fully satisfied using only a fraction of the link capacities, i.e., the corresponding variables

x
[1]
u,b,l,t ,∀b, l, t, of the selected links may be significantly lower than 1. However, the proposed

103



Algorithm 2 Rounding with resource pruning

1: Inputs: s, x, δ

2: s̄u ← 1 if su ≥ δ, s̄u ← 0 otherwise

3: x̄u,b,l,t ← 1 if xu,b,l,t ≥ δ, x̄u,b,l,t ← 0 otherwise

4: āu,u′,t =


1, if

∑
b′,l′ x̄u′,b′,l′,t ≥ 1,

0, otherwise.

5: Initialize: ŝ← s̄, x̂← x̄, â← ā

6: Check feasibility of ŝ, x̂, and â

7: while ŝ, x̂, and â are infeasible do

8: Count constraint violations for each link

9: Determine link (u∗, b∗, l∗, t∗) with most violations

10: x̂u∗,b∗,l∗,t∗ ← 0

11: if Requirement Ru∗ is not satisfied anymore then

12: ŝu∗ ← 0, x̂u∗,b,l,t ← 0, ∀b, l, t

13: end if

14: âu,u′,t =


1, if

∑
b′,l′ x̂u′,b′,l′,t ≥ 1,

0, otherwise.

15: Check feasibility of ŝ, x̂, and â

16: end while

17: for Each UE do

18: Keep minimal number of best links (beams)

19: end for

20: Outputs: ŝ, x̂, â

user association and beam scheduling framework requires all variables to be rounded to

either 0 or 1. Thus, it is necessary to design a rounding algorithm that would generate

binary vectors ŝ[1], x̂[1], and â[1], and pass them to Step 2.
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Given the rounded solution from Step 1, the Step 2 BIP in (4.19) is relaxed as follows

max
s[2],x[2],a[2]

∑
u

s[2]u + λ2
∑
u,b,l,t

ĉu,b,lx
[2]
u,b,l,t

s.t. (C-2.1)− (C-2.8),

0 ≤ s[2]u , x
[2]
u,b,l,t, a

[2]
u,u′,t ≤ 1, ∀u, u′, b, l, t.

(4.31)

Similar as in Step 1, a fractional solution consisting of the vectors s[2], x[2], and a[2] need to

be rounded. After rounding, the resulting binary vectors from Step 1 and Step 2 are passed

to Step 3 to perform power allocation on the selected links.

Next, we propose a polynomial-time algorithm to round the fractional solutions to (4.30)

and (4.31). The algorithm includes a threshold-based rounding, followed by an iterative

resource pruning that yields feasible solutions.

4.4.1 Rounding with Resource Pruning

We propose a rounding algorithm that is used after solving the relaxed problem in Step 1 and

after solving the relaxed problem in Step 2. Since the proposed algorithm is used after both

Step 1 and Step 2, we simplify the notation in this subsection by omitting the superscripts

[1] and [2] in the fractional solutions s, x, and a.

The algorithm start by rounding the fractional solutions based on the threshold δ. In

particular, we obtain a binary vector of associated UEs s̄, where each element s̄u is set to 1 if

su ≥ δ, and to 0 otherwise. Similarly, we obtain a binary vector of selected links x̄ by setting

x̄u,b,l,t to 1 if xu,b,l,t ≥ δ, and to 0 otherwise. The elements of the vector ā are calculated

based on the elements of x̄ and expression in (4.5) as follows

āu,u′,t =


1, if

∑
b′,l′ x̄u′,b′,l′,t ≥ 1,

0, otherwise.

(4.32)

To avoid missing the links where only a fraction of the capacity is used, we assume that

δ is a small constant value, e.g., δ = 0.1. However, with a small δ, it is likely that too

105



many links will be considered as ‘used’ and that the vectors s̄, x̄, and ā will violate multiple

constraints and thus represent an infeasible solution. To obtain feasible vectors ŝ, x̂, and â,

we propose an iterative approach based on resource pruning.

The main idea of resource pruning is to dismiss the most conflicted resource, i.e., the one

that violates the most constraints, in each iteration. We first initialize the vectors ŝ = s̄,

x̂ = x̄, and â = ā. Then in each iteration, we identify the communication link (u∗, b∗, l∗, t∗)

that violates most constraints and we set its corresponding association variable x̂u∗,b∗,l∗,t∗ = 0.

If removing the link prevents the rate requirement Ru∗ from being satisfied, we set exclude

the UE u∗ from further consideration, i.e., we set ŝu∗ = 0 and x̂u∗,b,l,t = 0, ∀b, l, t. The

vector â is updated based on the current x̂, similarly as in (4.32). The iterations stop when

a feasible solution is produced. Lastly, given the set of the links used in the feasible solution,

we ensure that each associated UE uses the smallest number of links (beams), while ensuring

the rate constraints. The proposed algorithm based on rounding with resource pruning is

summarized in Algorithm 2.

After the proposed algorithm is used in Step 2, a number of non-allocated serving beams

might still be available at the BSs. Based on the objective function in (4.19), which aims to

provide a maximal sum rate, the remaining serving beams are distributed among the UEs

with partially satisfied rate requirements. Specifically, we consider the links that correspond

to the remaining beams and we sort them out in a descending order in terms of the capacity.

Then we start from the links with the highest capacity and allocate them if they do not

violate the optimization constraints (C-2.1) - (C-2.8). The overall processing flow of the

proposed algorithm is summarized in Fig. 4.3.

4.4.2 Computational complexity

The complexity of solving the linear programs in (4.30), (4.31), and (4.29) scales as O(V n
1 ),

O(V n
2 ), andO(V n

3 ), respectively, where n is an algorithm-dependent exponent. The proposed

rounding algorithm used after Step 1 and Step 2 always converges because the maximum
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Solve relaxed problem in Step 1

Round solution using Algorithm 1

Solve relaxed problem in Step 2

Round solution using Algorithm 1

Add more feasible links with high
capacity to Step 2 UEs if possible

Create hybrid beamforming vectors and
solve power allocation problem in Step 3

Round solution using threshold δ 

Round solution using threshold δ 

Figure 4.3: Processing flow in the proposed algorithm.

number of iterations is limited to TNUEN
RF
UENBS. This number represents the number of

link candidates over time, i.e., the number of elements in the vector x̂. In each iteration,

the algorithm counts how many constraints does each of the currently used links violate in

(C-1.1), (C-1.2), and (C-1.6) - (C-1.8) (or in (C-2.1), (C-2.2), and (C-2.6) - (C-2.8)). Since

â is always updated based on the current x̂, the constraints (C-1.3) - (C-1.5) (or (C-2.3) -

(C-2.5)) cannot be violated and thus they are not considered during the rounding algorithm.

The complexity of counting scales as O(TNUEN
RF
UENBS(C1 + C2 + C6 + C7 + C8)), where

the numbers of constraints are C1 = TNUE, C2 = TNBS, C6 = TNUE(NUE − 1) (worst

case), C7 = TNUENRFEBS/2 (worst case), and C8 = NUE. The complexity of finding the

most conflicted link and checking the feasibility of ŝ, x̂, and â scale as O(TNUEN
RF
UENBS)

and O(C1NBSN
RF
UE +C2NUEN

RF
UE +2C6+C7NBSN

RF
UE +C8TNBSN

RF
UE ), respectively. After the
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iterative part of the algorithm, it is ensured that all associated UEs use a minimal number

of links. The worst case complexity of this step scales scales as O(NUE(TEBSN
RF
UE )

2). The

complexity of adding more links with high capacity to the UEs associated in Step 2 scales

as O(TNUEN
RF
UENBS(C1NBSN

RF
UE + C2NUEN

RF
UE + 2C6 + C7NBSN

RF
UE + C8TNBSN

RF
UE )) in the

worst case.

4.5 Numerical Results

In this section, we numerically evaluate the proposed framework and low-complexity algo-

rithm. Specifically, we first evaluate how interference management, i.e., intelligent beam

scheduling and hybrid beamforming, affect the average SINR per associated link. Then we

numerically compare the proposed algorithm with existing association schemes in terms of

the average number of fully satisfied UEs, partially satisfied UEs, network sum rate, and

transmit power usage per BS. Since all scheduled links are known after user association

and beam scheduling, the calculation of the metrics in this section is based on the true

interference powers and link capacities.

We consider a sub-network of NBS = 3 BSs with the inter-site distance of d = 200 m.

There are NUE UEs and their positions are generated randomly within the triangle formed by

the BSs. We consider an urban micro scenario with realistic mmMAGIC channels between

the BSs and UEs. We generate the channels using the Quadriga simulator [JRB19]. Based

on the mmMAGIC channel model, which supports the spatial consistency, the multipath

components of co-located UEs are highly correlated. Depending on the distance from the

BSs, the UEs can experience either line-of-sight or non-line-of-sight scenarios. It is worth

noting that in frequency-selective channels, the design of baseband precoders/combiners and

power allocation are done per subcarrier if a multi-carrier system is used, which increases

the computational complexity. In this chapter, our primary goal is to demonstrate the

effectiveness of coordinated user association and beam scheduling, and thus for simplicity,
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the numerical simulations are focused on the case when the delay spreads in the channels

are negligible (smaller than the sampling rate). We assume the operating frequency f = 28

GHz, transmit power PT = 30 dBm, bandwidth BW = 200 MHz, noise power spectral

density N0 = −174 dBm
Hz

, NA
UE = 8 UE antennas, NRF

UE = 2 UE RF chains, NA
BS = 32

BS antennas, NRF
BS = 4 BS RF chains. The rate requirements are drawn uniformly from

Ru ∼ U(Rmin, Rmax), ∀u, where Rmin = 0.2 Gbps and Rmax = 1 Gbps. The fraction ϵ in

Step 2 is assumed to be ϵ = 0.1. The proposed algorithm uses the threshold δ = 0.1. The

results are averaged across multiple Monte Carlo simulations to generate consistent results.

To demonstrate the benefits of beam scheduling and hybrid beamforming, we evaluate

the performance of the proposed framework with and without the interference suppression

constraints (C-1.3) - (C-1.7) and (C-2.3) - (C-2.7). The evaluation is done with RF pre-

coders/combiners and hybrid precoders/combiners. The main metric in this study is the dif-

ference in the average SINR per link between the frameworks with and without interference

management, i.e., the SINR gain per link when interference suppression constraints are used.

For this evaluation, we consider a dense sub-network with NUE = 50 UEs, and NRF
BS = 12

RF chains at each BS. For simplicity, we assume T = 1 time slot and that power allocation

is not performed. The results are presented in Fig. 4.4. They indicate that the designed

constraints, which suppress the main-lobe interference, lead to around 5 dB improvement in

the average SINR per link when only analog RF precoders and combiners are used. Hybrid

precoders and combiners can reduce the excess side-lobe interference and further increase

the average SINR per link. As shown in Fig. 4.4, the average SINR also improves with a

higher EBS, i.e., when each UE knows multiple BSs. More global knowledge enables the PU

to prevent main-lobe interference on a larger scale. In fact, with EBS = NBS = 3, interference

from all BSs in the considered sub-network can be suppressed in a coordinated way.

Further, we solve the optimization problems in the proposed framework using the Gurobi

solver in CVX [GB14] and using the proposed low-complexity algorithm to determine the

average number of satisfied UEs in the network, network sum rate, and transmit power usage
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Figure 4.4: Evaluation of the proposed framework with versus without interference suppres-

sion constraints using RF and hybrid beamforming vectors.

per BS. Additionally, the CVX solution and the proposed algorithm are compared with a

naive greedy user association approach. In the naive greedy approach, each UE selects the BS

with the highest signal power, and then the BSs schedule their beams to the corresponding

UE candidates with the best channels. For the rest of this section, we assume there are

T = 6 time slots, NUE = 20 UEs, and NRF
BS = 4 RF chains at each BS.

In Fig. 4.5, we compared the three solutions in terms of the average number of fully satis-

fied, partially satisfied, and not served UEs. The CVX solution results in the highest number

of satisfied UEs. However, obtaining this solution may take prohibitively long time, which

makes it impractical. The proposed low-complexity algorithm has sub-optimal performance,

but it leads to a significantly higher number of satisfied UEs than the naive greedy approach.

Interestingly, when EBS < NBS, the true number of fully satisfied UEs (blue bar) is lower
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Figure 4.5: Average number of fully satisfied, partially satisfied, and not served UEs. The

green line indicates the number of UEs associated in Step 1.

than the number of UEs associated in Step 1 (green line) for both the CVX solution and the

proposed algorithm. This happens because the pessimistic estimates of interference power

in (4.2) do not account for the main-lobe interference from unknown BSs, which cannot be

suppressed. In other words, the estimates are not pessimistic enough, and some the UEs,

which are considered to be fully satisfied after Step 1, could end up being only partially

satisfied when the true interference and link capacities are calculated. On the other hand,

when EBS = NBS = 3, this problem is not present and the true number of fully satisfied UEs

is always greater or equal than the number of UEs associated in Step 1. As the number of

fully satisfied UEs increases with a higher EBS, i.e., with a higher level of strict coordination

in beam scheduling, the number of partially satisfied UEs decreases because there is a lower

number of non-interfering beams that can be scheduled for them. Additionally, after power
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Figure 4.6: Average network sum rate.

allocation, the number of partially satisfied UEs can decrease further because some partially

satisfied UEs can be allocated enough power to end up being fully satisfied.

The proposed framework is compared with the naive greedy approach in terms of the

network sum rate and transmit power usage in Fig. 4.6 and Fig. 4.7, respectively. The naive

greedy approach results in a higher network sum rate because it is focused on scheduling

all available BS beams to the UEs with good channels, while using the entire budget of

the transmit power at each BS in each time slot. Without power allocation, the network

sum rate in the proposed framework increases with a higher EBS, while the percentage of

used transmit power decreases at the same time. This comes as a consequences of a higher

number of associated UEs and a more coordinated beam scheduling with less interference.

Additionally, without power allocation, the majority of transmit power is allocated to the

UEs associated in Step 1. On the other hand, with power allocation and EBS = NBS = 3,
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Figure 4.7: Average percentage of used transmit power per BS per time slot.

the network sum rate and the overall percentage of used power are reduced because the fully

satisfied UEs are provided with the minimum required power to satisfy their requirements,

as explained earlier in Section 4.3.3. Importantly, due to power allocation, the percentage

of power allocated to the partially satisfied UEs is increased.

Besides with the naive greedy approach, we compare the proposed framework and low-

complexity algorithm with a commonly considered optimization framework that aims to

maximize the network sum rate. For this comparison, we use the same metrics as before and

we present the results in Fig. 4.8. The maximum sum rate association jointly considers all

known links in the sub-network and schedules them such that the overall data rate across

all associated UEs is maximized. For this reason, the UEs with very good channels will be

favored and they will be allocated all available BS beams and transmit power. Consequently,

the rate requirements of many UEs remain unsatisfied. On the other hand, the proposed
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Figure 4.8: Comparison between the proposed low-complexity algorithm and association

based on the network sum rate maximization. (a) Average number of fully satisfied, partially

satisfied, and not served UEs. (b) Average network sum rate. (c) Average percentage of

used transmit power per BS per time slot.

algorithm leads to a lower network sum rate. However, due to different objectives, the

proposed algorithm is able to schedule BS beams to a larger number of UEs and satisfy

more of them using a lower transmit power per BS per time slot.

4.6 Conclusions

In this chapter, we proposed and mathematically formulated a sequential three-step op-

timization framework for user association in dense mmW networks. The framework was

shown to maximize the number of UEs with satisfied rate requirements, while suppressing

the inter- and intra-cell interference through intelligent beam scheduling and design of hybrid

beamforming vectors. We also developed a low-complexity algorithm based on relaxation,

rounding, and resource pruning to solve the formulated NP-hard optimization problem. Nu-

merical results showed that the interference management in the proposed framework signifi-

cantly increases the average SINR per associated link. Compared to the existing association

approaches which are primarily focused on sum rate maximization, the proposed framework
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was shown to lead to a higher number of satisfied UEs while requiring a lower transmit power

per BS.
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Table 4.1: Notation Summary

NBS, N
A
BS, N

RF
BS Number of BSs, BS antenna elements, and BS RF chains

NUE, N
A
UE, N

RF
UE Number of UEs, UE antenna elements, and UE RF chains

EBS Number of BSs that are known to each UE

PT, PN, N0 Transmit power, noise power, and power spectral density of noise

f , BW, T Carrier frequency, bandwidth, and number of time slots

d Inter-site distance

ϵ Fraction of rate requirements

δ Threshold for initial rounding

λ1, λ2 Scaling parameters in multi-criterion objective functions in Step 1 and Step 2

V1, V3, V3 Number of variables in Step 1 - Step 3

C1, ..., C8 Number of constraints (C-1.1), ..., (C-1.8), or equivalently in (C-2.1), ..., (C-2.8)

U , B, L, T Sets of all UEs, all BSs, all links between pairs of UEs and BSs, and all time slots

u, b, l, t Indices for UEs, BSs, links, and time slots

Ru, Rmin, Rmax Rate requirement of UE u, minimum, and maximum possible requirement

Hu,b Channel matrix between UE u and BS b

Fb,t
RF, F

b,t
BB, Fb,t RF, digital, and hybrid precoding matrices at BS b in time slot t

Wu,t
RF, W

u,t
BB, Wu,t RF, digital, and hybrid combining matrices at UE u in time slot t

du,b,l
BS , du,b,l

UE Candidate RF DFT precoder and combiner on link l between UE u and BS b

γ̂u,b,l Pessimistic SINR on the l-th link between the UE u and BS b

gu,b,l,t Effective beamforming gain on link l between the UE u and BS b in time slot t

Îu,b,l, Iu,b,l,t Pessimistic and true interference on link l between UE u and BS b in time slot t

ĉu,b,l, cu,b,l,t Pessimistic and true capacities on link l between UE u and BS b

Iu Set of UEs that have at least one of their BS beams in common with UE u

Ju Set of DFT beam candidates that correspond to more than one link of the UE u

su Var. that indicates if rate requirement of UE u is satisfied

xu,b,l,t Var. that indicates if link l between UE u and BS b is used in time slot t

au,u′,t Var. that indicates if UE u′ is alloc. at least one BS beam of UE u in time slot t

pu,b,l,t Power alloc. var. on link l between UE u and BS b in time slot t

s̄u, x̄u,b,l,t, āu,u′,t Values of variables after initial threshold-based rounding

ŝu, x̂u,b,l,t, âu,u′,t Feasible values of variables after proposed algorithm
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CHAPTER 5

Conclusions

5.1 Summary of Contributions

In this dissertation, we developed and studied approaches for fast beam training with TTD

arrays, fast channel estimation with TTD arrays, and user association and low-interference

beam scheduling in mmW networks.

In Chapter 2, we introduced three TTD architectures with baseband delay elements for

fast mmW beam training. We developed a non-coherent power-based DSP algorithm for

TTD-based beam training that achieves a high angle estimation accuracy using only one

wideband training symbol. We studied how the codebook design and beam training perfor-

mance in analog and hybrid TTD arrays depend on system parameters, including the band-

width, number of antenna elements, and maximum TTD delay compensation. Numerical

simulations revealed the angle estimation accuracy and robustness to hardware impairments

of the proposed TTD architectures in UE beam training when benchmarked against the fully

digital array. The idea of beam training with frequency-dependent beams was extended to

joint beam training between the BS and UE. We analyzed the beam pair misalignment prob-

ability and required overhead in TTD-based joint beam training and we compared them to

their counterparts in the EBS. The results indicate that the proposed TTD-based beam

training can achieve a lower misalignment probability and required overhead than the EBS

in realistic mmW channels.

In Chapter 3, we developed a frequecy-domain CS-based DSP algorithm to estimate
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sparse mmW channels using an analog TTD array. The proposed algorithm was shown to

achieve a good channel estimation accuracy while using sub-band based processing to reduce

the required overhead and computational complexity compared to the related benchmark

approaches. Due to a particularly high angle estimation accuracy, the algorithm leads to

a higher post-estimation spectral efficiency than the benchmark approaches. The proposed

algorithm is also evaluated in the presence of time-invariant errors in the analog TTD array

and the results indicate a high robustness to hardware impairments. The analysis of the

impact of hardware impairments was extended by linearizing the received signal model and

deriving the CRLB for the parameters of LoS mmW channels, including the AoD, AoA,

and phase of the complex channel gain. In order to improve the estimation accuracy of the

proposed algorithm, we proposed a gradient descent based refinement of channel parameters,

which was shown to reach the performance bound.

In Chapter 4, we proposed and mathematically formulated a new three-step optimiza-

tion framework for user association and low-interference beam scheduling in a centralized

mmW sub-network. The framework’s objetive and constraints were designed to maximize

the number of UEs with satisfied rate requirements, while suppressing the directional inter-

and intra-cell interference through intelligent beam scheduling and design of hybrid beam-

forming vectors. Given that the formulated optimization problems are NP-hard, we designed

a low-complexity heuristic algorithm based on relaxation, rounding, and resource pruning to

obtain sub-optimal solutions in polynomial time. The performance of the proposed frame-

work was evaluated in realistic mmW channels. Numerical results showed that the proposed

scheduling and hybrid beamforming significantly increase the average SINR per associated

link. We also compared the proposed framework with existing association approaches, which

are primarily focused on sum rate maximization. The comparison revealed that the proposed

framework leads to a higher number of satisfied UEs while requiring a lower transmit power

per BS.
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5.2 Future Work

In Chapter 2, the proposed beam training algorithms were focused on finding only the best

steering direction in the channel. The future work could extend the algorithms to include the

identification of multiple AoAs in the presence of strong directional interferers. Furthermore,

practical mmW networks require beam training with planar arrays. For this reason, it would

be interesting to design a procedure for joint beam training between the BS and UE with

planar arrays. Perhaps the most important question related to TTD-based beam training,

which is fundamentally different from beam sweeping, is its compatibility with the 5G New

Radio Standard. Solving the compatibility problem would allow practical implementations

of TTD-based beam training procedures.

In Chapter 3, we proposed a CS-based algorithm for low-complexity channel estimation

with TTD arrays. The future work should study alternative designs of channel estimation

algorithms. For example, a sequential estimation of the AoDs and AoAs has the potential

to further reduce the DSP complexity. In addition, the potential benefits of the hardware

error estimation and calibration on the channel estimation performance could be explored

in the future. Similar as with TTD-based beam training, the future work should address

the compatibility problem between the TTD-based channel estimation and 5G New Radio

Standard.

Chapter 4 considered only data-hungry UEs, but future wireless networks will need to

accommodate the UEs with various quality-of-service requirements. For example, a network

have have the UEs with high data rate requirements and the UEs with low-latency and high-

reliability requirements at the same time. In such networks, the optimization framework for

user association and low-interference beam scheduling needs to have more sophisticated ob-

jectives and constraints compared to the ones considered in this chapter. In that context, a

number of questions related to the framework modeling arise. What should the objectives

maximize/minimize when the UEs have different requirements? Should the framework intro-
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duce different priorities for the UEs? For example, the UEs with low-latency requirements

have a higher priority than the UEs with high data rate requirements. If so, how should

the available system resources, e.g., beams, frequencies, and power, be allocated to the UEs

under the priority considerations? It will be interesting to study and answer these questions

in the future work.
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APPENDIX A

Appendix for Chapter 1

A.1 Derivation of Expected Powers in D Directions

As assumed in Sec. 2.4, the channel gains gl[k],∀l,m, are independent across different clusters

and well-separated subcarriers. Thus, with Q ≫ L and a negligible approximation error,

the channel in (2.2) can be considered as one frequency domain realization of the following

channel matrix

H = ARΛAH
T. (A.1)

The square matrix Λ ∈ CQ×Q has only L non-zero elements that correspond to the cluster

gains gl, ∀l.

With the codebook design described in Sec. 2.5, the received signal in any probed direction

d can be considered as a zero-mean complex Gaussian random variable and expressed as

Yd = fHd Hvs+ fHd n, (A.2)

where n ∼ CN (0, σ2
NIR) is white Gaussian noise. The realizations of (A.2) are received

symbols Y [m], m ∈Md. The expected received signal power in direction d is pd = E [|Yd|2] =

E[(fHd Hvs + fHd n)
H(fHd Hvs + fHd n)]. Based on the channel model in (A.1), it can be shown

that

pd =M−1E
[
vHATΛ

∗AH
Rfdf

H
d ARΛAH

Tv
]
+ E

[
nHfdf

H
d n
]
. (A.3)

We apply the trace operator Tr() to (A.3) and exploit its linearity and cyclic property to
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obtain

pd =M−1E
[
Tr
(
ΛAH

Tvv
HATΛ

∗AH
Rfdf

H
d AR

)]
+NRσ

2
N

= Tr
(
GAH

Rfdf
H
d AR

)
+NRσ

2
N. (A.4)

where G = E
[
ΛAH

Tvv
HATΛ

∗]. Since Λ and Λ∗ are sparse matrices, ΛAH
Tvv

HATΛ
∗ yields

another sparse Q×Q matrix with L2 non-zero elements. There are L non-zero elements of

the form |gl|2|aH
T(θ

(T )
l )v|2/M, ∀l, on the main diagonal. The L(L− 1) off-diagonal elements

are cross terms gl1g
∗
l2
aH
T(θ

(T )
l1

)vvHaT(θ
(T )
l2

)/M, ∀l1, l2. Thus, G is a diagonal matrix with L

non-zero elements σ2
l |aH

T(θ
(T )
l )v|2/M, ∀l, since E

[
gl1g

∗
l2

]
= 0, ∀l1 ̸= l2, and E [|gl|2] = σ2

l , ∀l.

The product of G and the matrix of the UE BF gains AH
Rfdf

H
d AR is a Q×Q matrix whose

diagonal elements are equal to |fHd aR(ξq)|2[G]q,q, so (A.4) becomes

pd = bTd g +NRσ
2
N (A.5)

where bd =
[
|fHd aR(ξ1)|2, |fHd aR(ξ2)|2, ..., |fHd aR(ξQ)|2

]T
and g = diag(G). By vectorizing the

result in (A.5), we obtain

p = Bg +NRσ
2
N1, (A.6)

where p = [p1, p2, ..., pD]
T and B = [b1,b2, ...,bD]

T . Since the BS provides a large BF gain

with the fixed precoder v, we can assume that receiver array sees only one spatially filtered

dominant cluster, e.g., the first one. Consequently, there is only one non-zero element in g

equal to |aH
T(θ

(T)
1 )v|2σ2

1/M .
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APPENDIX B

Appendix for Chapter 3

B.1 Proof of Proposition 1

Let A =
∑

u s
[1]
u and B = −

∑
u,b,l,t x

[1]
u,b,l,t for notation brevity. The set of all possible

values for A and B includes the optimal trade-off curve that is a piece-wise linear (PWL)

function, as illustrated in Fig. B.1(a). It is possible to find a hyperplane defined by [λ1, 1]

which touches the optimal trade-off curve at the point where A is maximized and B is

maximal (the red point in the figure). This is achieved by choosing λ1 from the range

(0, 1
K1

), where 1
K1

is the lowest absolute value of non-zero slopes in the PWL trade-off curve.

Note that 1
K1

is a theoretical lower bound and it might not exist in the actual optimal trade-

off curve. Therefore, λ1 =
1

K1+1
∈ (0, 1

K1
) guarantees that the number of fully satisfied UEs

is maximized using a minimal number of serving beams.

The constant K1 can be interpreted as the highest change in price (number of serving

beams) that the objective function in Step 1 is ready to pay so that the number of fully

satisfied UEs is increased by 1. In the best case, N−1 users can be fully satisfied using N−1

serving beams. The highest change in price occurs if N UEs require the maximum number

of serving beams to be satisfied, as illustrated in Fig. B.2(a). When TNUEN
RF
UE ≤ TNBSN

RF
BS ,

the constant K1 is given as follows

K1 = max
N∈[1,NUE]

NTNRF
UE −N + 1 = NUE(TN

RF
UE − 1) + 1. (B.1)
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Figure B.1: PWL optimal trade-off curve in (a) Step 1, and in (b) Step 2.

On the other hand, when TNUEN
RF
UE > TNBSN

RF
BS , K1 is

K1 = max
N∈[1,NUE]

TNBSN
RF
BS −N = TNBSN

RF
BS . (B.2)

B.2 Proof of Proposition 2

Similar as in the proof for Proposition 1, it is possible to find a hyperplane defined by

[λ2, 1] which touches the optimal PWL trade-off curve at the point where A =
∑

u s
[2]
u is

maximized and B =
∑

u,b,l,t ĉu,b,lx
[2]
u,b,l,t is maximal, as illustrated in Fig. B.1(b). This is

achieved by choosing λ2 from the range
(
0, 1

K2

)
, i.e., λ2 =

1
K2+1

.

The constant K2 can be interpreted as the highest change in reward (sum data rate)

that the objective function declines to pay so that the number of partially satisfied UEs

decreases by 1. Let cmin = minu,b,l,t ĉu,b,l(1 − x
[1]
u,b,l,t) and cmax = maxu,b,l,t ĉu,b,l(1 − x

[1]
u,b,l,t)

be the minimum and maximum non-zero link capacities in Step 2, respectively. Consider

the case when each of N partially satisfied UEs is served using a link with the capacity

cmin. The highest change in reward, but with a negative impact on the number of partially

satisfied UEs occurs when N − 1 UEs are served using the maximum number of links that

have the capacity cmax, as illustrated in Fig. B.2(b). Thus, when TNUEN
RF
UE ≤ TNBSN

RF
BS ,
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Figure B.2: Illustration of scalarization constants (a) K1 in Step 1, and (b) K2 in Step 2.

The figures use N1 and N2 for notation brevity. If TNUEN
RF
UE ≤ TNBSN

RF
BS , N1 = NTNRF

UE

and N2 = (N − 1)TNRF
UEcmax, and N1 = TNBSN

RF
BS and N2 = TNBSN

RF
UEcmax otherwise.

the constant K2 is given as follows

K2 = max
N∈[1,NUE]

(N − 1)TNRF
UEcmax −Ncmin

= (NUE − 1)TNRF
UEcmax −NUEcmin. (B.3)

Conversely, when TNUEN
RF
UE > TNBSN

RF
BS , K2 is given as

K2 = max
N∈[1,NUE]

TNBSN
RF
BS cmax −Ncmin = TNBSN

RF
BS cmax. (B.4)

B.3 Design of Hybrid Precoders and Combiners

Given the RF precoding matrices Fb,t
RF, ∀b, t, and RF combining matrices Wu,t

RF, ∀u, t, the

PU first calculates the baseband precoding matrices Fb,t
BB, ∀b, t and hybrid precoding ma-

trices Fb,t, ∀b, t, and then baseband combining matrices Wu,t
BB, ∀u, t, and hybrid combining

matrices Wu,t, ∀u, t.

Let UBS,b,t = {u1, u2, ...} be the set of UEs served by the BS b using the set of links

LBS,b,t = {l1, l2, ...} in the time slot t. Let HBS,b,t ∈ C|UBS,b,t|×|UBS,b,t| be the effective channel
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matrix after the RF precoding from the BS b and the RF combining from the UEs from

UBS,b,t. The (i, j)-th element of HBS,b,t is

[HBS,b,t]i,j = wui,b,li,tH
RF Hui,bf

uj ,b,lj ,t
RF , (B.5)

where f
uj ,b,lj ,t
RF and wui,b,li,t

RF and the columns of Fb,t
RF and Wu,t

RF, respectively. Specifically,

f
uj ,b,lj ,t
RF is the RF precoder for the UE uj and its link lj, while wui,b,li,t

RF is the RF combiner

for the UE ui and link li. Given HBS,b,t, the PU designs the zero forcing baseband precoding

matrix, which removes the excess intra-cell side-lobe interference, as follows

Fb,t
BB = HH

BS,b,t

(
HBS,b,tH

H
BS,b,t

)−1
. (B.6)

The hybrid precoding matrix is F̃b,t = Fb,t
RFF

b,t
BB. The columns f̃uj ,b,lj ,t, ∀uj, lj, of F̃b,t can

be normalized using a diagonal normalization matrix NBS,b,t, whose non-zero element in the

position (j, j) is defined as 1/
∥∥∥f̃uj ,b,lj ,t∥∥∥

2
. Thus, the normalized hybrid precoding matrix is

defined as

Fb,t = Fb,t
RFF

b,t
BBNBS,b,t. (B.7)

Let BUE,u,t = {b1, b2, ...} be the set of BSs that serve the UE u using the set of links

LUE,u,t = {l1, l2, ...} in the time slot t. Let HUE,u,t ∈ C|BUE,u,t|×|BUE,u,t| be the effective channel

matrix after the RF combining from the UE u and hybrid precoding from the BSs from

BUE,u,t. The (i, j)-th element of HUE,u,t is

[HUE,u,t]i,j = wu,bi,li,tH
RF Hu,bj fu,bj ,lj ,t, (B.8)

where fu,bj ,lj ,t is the hybrid precoder used at the BS bj for the link lj. Using HUE,u,t, the

PU designs the zero forcing baseband combining matrix, which removes the excess side-lobe

interference caused by multi-connectivity, as follows

Wu,tH
BB =

(
HH

UE,u,tHUE,u,t

)−1
HH

UE,u,t. (B.9)

Alternatively, the minimum mean square error baseband combining matrix can be designed

as

Wu,tH
BB =

(
HH

UE,u,tHUE,u,t + PNINRF
UE

)−1

HH
UE,u,t. (B.10)
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The hybrid combining matrix is W̃u,t = Wu,t
RFW

u,t
BB. Similar as the hybrid precoding vectors,

the columns of W̃u,t can be normalized using a diagonal normalization matrix NUE,u,t, whose

non-zero element at the position (i, i) is 1/ ∥w̃u,bi,li,t∥2. Therefore, the normalized combining

matrix is defined as follows

Wu,t = Wu,t
RFW

u,t
BBNUE,u,t. (B.11)

The worst case complexities of calculating the baseband precoders Fb,t
BB, ∀b, t, and base-

band combinersWu,t
BB, ∀u, t, scale asO(TNBS(N

RF3
BS +2NRF2

BS )) andO(TNUE(N
RF3
UE +2NRF2

UE )),

respectively.

127



REFERENCES

[3GP18] 3GPP. “E-UTRA and NR - Multi-connectivity, Stage-1, TS 37.340.” December
2018.

[3GP19a] 3GPP. “NR - User Equipment (UE) procedures in Idle mode and RRC Inactive
state, TS 38.304.” September 2019.

[3GP19b] 3GPP. “Study on channel model for frequencies from 0.5 to 100 GHz, TR 38.901.”
June 2019.

[ABC14] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang. “What Will 5G Be?” IEEE Journal on Selected Areas in
Communications, 32(6):1065–1082, June 2014.

[ABK17] Jeffrey G. Andrews, Tianyang Bai, Mandar N. Kulkarni, Ahmed Alkhateeb, Ab-
hishek K. Gupta, and Robert W. Heath. “Modeling and Analyzing Millimeter
Wave Cellular Systems.” IEEE Transactions on Communications, 65(1):403–
430, 2017.

[AEL14] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath. “Channel Estimation
and Hybrid Precoding for Millimeter Wave Cellular Systems.” IEEE Journal of
Selected Topics in Signal Processing, 8(5):831–846, 2014.

[AHC22] Suyoung Ahn, Joonpyo Hong, Yunhee Cho, Jehyeon Na, and Jeongho Kwak.
“Sequential Beam, User, and Power Allocation for Interference Management in
5G mmWave Networks.” In 2022 International Conference on Information Net-
working (ICOIN), pp. 429–434, 2022.

[ALS14] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport,
and E. Erkip. “Millimeter Wave Channel Modeling and Cellular Capacity Eval-
uation.” IEEE Journal on Selected Areas in Communications, 32(6):1164–1179,
2014.

[AV19] Alireza Alizadeh and Mai Vu. “Load Balancing User Association in Millime-
ter Wave MIMO Networks.” IEEE Transactions on Wireless Communications,
18(6):2932–2945, 2019.

[Baj19] M. Bajor et al. “A Flexible Phased-Array Architecture for Reception and Rapid
Direction-of-Arrival Finding Utilizing Pseudo-Random Antenna Weight Modula-
tion and Compressive Sampling.” IEEE J. Solid-State Circuits, 54(5):1315–1328,
May 2019.

[BAN14] Djamal E. Berraki, Simon M. D. Armour, and Andrew R. Nix. “Application
of compressive sensing in sparse spatial channel recovery for beamforming in

128



mmWave outdoor systems.” In 2014 IEEE Wireless Communications and Net-
working Conference (WCNC), pp. 887–892, 2014.

[BC22] V. Boljanovic and D. Cabric. “Millimeter-Wave Wideband Channel Estimation
Using Analog True-Time-Delay Array Under Hardware Impairments.” Journal
of Signal Processing Systems, 2022.

[BHM16] C. N. Barati, S. A. Hosseini, M. Mezzavilla, T. Korakis, S. S. Panwar, S. Ran-
gan, and M. Zorzi. “Initial Access in Millimeter Wave Cellular Systems.” IEEE
Transactions on Wireless Communications, 15(12):7926–7940, 2016.

[BHR14] C. N. Barati, S. A. Hosseini, S. Rangan, P. Liu, T. Korakis, and S. S. Panwar.
“Directional cell search for millimeter wave cellular systems.” In 2014 IEEE 15th
International Workshop on Signal Processing Advances in Wireless Communica-
tions (SPAWC), pp. 120–124, 2014.

[BIB15] Robert Baldemair, Tim Irnich, Kumar Balachandran, Erik Dahlman, Gunnar
Mildh, Yngve Selén, Stefan Parkvall, Michael Meyer, and Afif Osseiran. “Ultra-
dense networks in millimeter-wave frequencies.” IEEE Communications Maga-
zine, 53(1):202–208, 2015.

[BSC22a] V. Boljanovic, S. Sarkar, and D. Cabric. “Millimeter-wave user association and
low-interference beam scheduling (Invited paper).” In To Appear in 6th ACM
Workshop on Millimeter-Wave Networks and Sensing Systems, New York, NY,
USA, 2022. Association for Computing Machinery.

[BSC22b] Veljko Boljanovic, Shamik Sarkar, and Danijela Cabric. “Millimeter-wave user
association and low-interference beam scheduling.” In Accepted for presentation
at the 6th ACM Workshop on Millimeter-Wave Networks and Sensing Systems,
New York, NY, USA, 2022. Association for Computing Machinery.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[BYG20] V. Boljanovic, H. Yan, E. Ghaderi, D. Heo, S. Gupta, and D. Cabric. “Design
of Millimeter-Wave Single-Shot Beam Training for True-Time-Delay Array.” In
2020 IEEE 21st International Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC), pp. 1–5, 2020.

[BYL21] V. Boljanovic, H. Yan, C.-C. Lin, S. Mohapatra, D. Heo, S. Gupta, and D. Cabric.
“Fast Beam Training With True-Time-Delay Arrays in Wideband Millimeter-
Wave Systems.” IEEE Transactions on Circuits and Systems I: Regular Papers,
68(4):1727–1739, 2021.

129



[CH10] T. Chu and H. Hashemi. “A true time-delay-based bandpass multi-beam ar-
ray at mm-waves supporting instantaneously wide bandwidths.” In 2010 IEEE
International Solid-State Circuits Conference - (ISSCC), pp. 38–39, 2010.

[CM21] Ashok Kumar Reddy Chavva and Neelesh B. Mehta. “Millimeter-Wave Beam
Selection in Time-Varying Channels With User Orientation Changes.” IEEE
Transactions on Wireless Communications, 20(11):6987–7000, 2021.

[CSC18] M. Cho, I. Song, and J. D. Cressler. “A True Time Delay-based SiGe Bi-
directional T/R Chipset for Large-Scale Wideband Timed Array Antennas.” In
2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 272–275,
2018.

[CZW18] Hongyun Chu, Le Zheng, and Xiaodong Wang. “Semi-Blind Millimeter-Wave
Channel Estimation Using Atomic Norm Minimization.” IEEE Communications
Letters, 22(12):2535–2538, 2018.

[CZW19] Hongyun Chu, Le Zheng, and Xiaodong Wang. “Super-Resolution mmWave
Channel Estimation for Generalized Spatial Modulation Systems.” IEEE Journal
of Selected Topics in Signal Processing, 13(6):1336–1347, 2019.

[DKS14] V. Desai, L. Krzymien, P. Sartori, W. Xiao, A. Soong, and A. Alkhateeb. “Initial
beamforming for mmWave communications.” In 2014 48th Asilomar Conference
on Signals, Systems and Computers, pp. 1926–1930, 2014.

[DPW17] D. De Donno, J. Palacios, and J. Widmer. “Millimeter-Wave Beam Training Ac-
celeration Through Low-Complexity Hybrid Transceivers.” IEEE Transactions
on Wireless Communications, 16(6):3646–3660, 2017.

[DTS18] Junquan Deng, Olav Tirkkonen, and Christoph Studer. “MmWave channel esti-
mation via atomic norm minimization for multi-user hybrid precoding.” In 2018
IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6,
2018.

[FCC16] FCC. “FACT SHEET: SPECTRUM FRONTIERS PROPOSAL TO IDENTIFY,
OPEN UP VAST AMOUNTS OF NEW HIGH-BAND SPECTRUM FOR NEXT
GENERATION (5G) WIRELESS BROADBAND.”, July 2016.

[GB14] Michael Grant and Stephen Boyd. “CVX: Matlab Software for Disciplined Con-
vex Programming, version 2.1.” http://cvxr.com/cvx, March 2014.

[GG21] Erfan Ghaderi and Subhanshu Gupta. “A Four-Element 500-MHz 40-mW 6-bit
ADC-Enabled Time-Domain Spatial Signal Processor.” IEEE Journal of Solid-
State Circuits, 56(6):1784–1794, 2021.

130

http://cvxr.com/cvx


[GHD16] Zhen Gao, Chen Hu, Linglong Dai, and Zhaocheng Wang. “Channel Estimation
for Millimeter-Wave Massive MIMO With Hybrid Precoding Over Frequency-
Selective Fading Channels.” IEEE Communications Letters, 20(6):1259–1262,
2016.

[GPB20] E. Ghaderi, C. Puglisi, S. Bansal, and S. Gupta. “10.8 A 4-Element
500MHz-modulated-BW 40mW 6b 1GS/s Analog-Time-to-Digital-Converter-
Enabled Spatial Signal Processor in 65nm CMOS.” In 2020 IEEE International
Solid-State Circuits Conference (ISSCC), February 2020.

[GSR19] Erfan Ghaderi, Ajith Sivadhasan Ramani, Arya A. Rahimi, Deukhyoun Heo,
Sudip Shekhar, and Subhanshu Gupta. “An Integrated Discrete-Time Delay-
Compensating Technique for Large-Array Beamformers.” IEEE Transactions on
Circuits and Systems I: Regular Papers, 66(9):3296–3306, 2019.

[GTC14] A. Ghosh, T. A. Thomas, M. C. Cudak, R. Ratasuk, P. Moorut, F. W. Vook, T. S.
Rappaport, G. R. MacCartney, S. Sun, and S. Nie. “Millimeter-Wave Enhanced
Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks.”
IEEE Journal on Selected Areas in Communications, 32(6):1152–1163, 2014.

[GTM16] Xiaohu Ge, Song Tu, Guoqiang Mao, Cheng-Xiang Wang, and Tao Han. “5G
Ultra-Dense Cellular Networks.” IEEE Wireless Communications, 23(1):72–79,
2016.

[Gur22] Gurobi Optimization, LLC. “Gurobi Optimizer Reference Manual.”, 2022.

[GYS20] Yasaman Ghasempour, Chia-Yi Yeh, Rabi Shrestha, Daniel Mittleman, and Ed-
ward Knightly. “Single Shot Single Antenna Path Discovery in THz Networks.”
In Proceedings of the 26th Annual International Conference on Mobile Comput-
ing and Networking, MobiCom ’20, New York, NY, USA, 2020. Association for
Computing Machinery.
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