mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine

Front Immunol. 2023 Jan 12:13:1020844. doi: 10.3389/fimmu.2022.1020844. eCollection 2022.

Abstract

Background: The new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination.

Objective: However, the impact of these new vaccine formats with unclear effects on the long-term Ab response - including isotype, subclass, and their type of Fc glycosylation - is less explored.

Methods: Here, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270.

Results: We show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses - the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations.

Conclusion: In summary, the study suggests a comparable "adjuvant" potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.

Keywords: COVID-19; IgA; IgG; IgG glycosylation; IgG subclass; SARS-CoV-2; antibody; vaccination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics
  • BNT162 Vaccine
  • COVID-19 Vaccines
  • COVID-19* / prevention & control
  • ChAdOx1 nCoV-19
  • Humans
  • Immunoglobulin G*
  • SARS-CoV-2
  • mRNA Vaccines

Substances

  • Immunoglobulin G
  • COVID-19 Vaccines
  • BNT162 Vaccine
  • ChAdOx1 nCoV-19
  • mRNA Vaccines

Grants and funding

This project received funding from the Deutsche Forschungsgemeinschaft ((DFG, German Research Foundation): grants 398859914 (EH 221/10-1); 400912066 (EH 221/11-1); 429175970 (RTG 2633); and 390884018 (Germany`s Excellence Strategies - EXC 2167, Precision Medicine in Chronic Inflammation (PMI)) (ME), the Federal State Schleswig-Holstein, Germany (“COVID-19 Research Initiative Schleswig-Holstein”): grant DOI4-Nr. 3 (ME) and the European Union’s Horizon 2020 research and innovation program H2020-MSCA-ITN: grant 721815) (TP). We acknowledge financial support by Land Schleswig-Holstein within the funding program Open Access Publication Fond. JB was a PhD student of the RTG 2633.