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Abstract  

We found some benefit of explicitly accounting for the growth rate variability but it 

was limited for these small data sets. Nonetheless, the GAMLSS approach holds 

promise for modelling marine turtle somatic growth dynamics when larger data sets 

are available with a broader range of potentially informative covariates. Importantly, 

the random effects GAMLSS models fit using Bayesian inference suggested fewer 

significant covariates than the frequentist inferential procedure. This might be due to 

the Bayesian procedure being better suited to accounting for the uncertainty in model 

parameter estimates when applied to small data sets. 

 

 

Introduction 

 

Green sea turtles (Chelonia mydas) are globally distributed in tropical and subtropical 

waters and are listed as Threatened or Endangered under the US Endangered Species 

Act (ESA). The Hawaiian green turtle population is genetically distinct from other 

global green turtle stocks (Dutton et al. 2008) and belongs to the Central North Pacific 
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distinct population segment (DPS), which is currently listed as Threatened under the 

ESA but Least Concern Red List category by the International Union for 

Conservation of Nature www.iucnredlist.org/details/16285718/0. Hawaiian green 

turtles were at the brink of extinction in the 1960’s, but state and federal protection 

resulted in four decades of population increases. The population is now among the 

best studied and best protected worldwide of any marine turtle population (Balazs et 

al. 2015).  The strong dichotomy in conservation status between green turtle 

populations- some increasing or stable, and others declining-  is one of the great 

challenges of our time in balancing protective restrictions versus human use, where 

such utilization might be advantageous to both turtles and people (see Broderick 2015 

and Kondo et al. 2017 for relevant discussions).  

 

 Hawaiian green turtles live in coastal habitats and exhibit a high degree of site 

fidelity to their specific feeding locations. At some foraging locations, green turtles 

appear to be at or near carrying capacity (Wabnitz et al 2010). Decades of population 

growth have resulted in slow and declining somatic growth rates across the Hawaiian 

Archipelago (Balazs & Chaloupka 2004). Yet, some portions of the population 

behave differently, growing and maturing faster than expected (Van Houtan et al 

2014). These individual differences in growth are the focus of this study. 

 

Marine turtle somatic growth studies generally focus on the mean or expected growth 

behavior and do not address the variability in that growth (Chaloupka et al 2004, 

Balazs & Chaloupka 2004, Kubis et al 2009, Bjorndal et al 2016).  In fact the mean 

response is the most commonly modeled summary statistic for most purposes across 

many disciplines (Kneib 2013). Marine turtle somatic growth rates can be highly 

http://www.iucnredlist.org/details/16285718/0
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variable (Chaloupka & Balazs 2005, Bjorndal et al 2016,2017), and that heterogeneity 

might be a function of important predictors or covariates leading to further insight 

into marine turtle growth dynamics. Yet that variability has not been accounted for in 

any marine turtle growth rate study. So the main purpose of our study was to explore 

green turtle somatic growth dynamics in terms of not only the mean growth dynamics 

but also in terms of the variability in that growth behavior.  

 

We address this issue of modeling beyond the mean response by using the GAMLSS 

regression modeling approach (Stasinopoulos & Rigby 2007). Potentially informative 

covariates can then be specified not only for the mean of the growth rate response but 

also for a range of other summary parameters of the response distribution such as the 

variance, skewness and kurtosis (Stasinopoulos & Rigby 2007, Kneib 2013).  

 

  

Materials and Methods 

 

Data set and sampling design 

 

The data set comprised 267 growth records for carapace size of 108 individual 

immature green turtles captured in two Hawaiian Archipelago foraging grounds in an 

ongoing long-term and spatially extensive capture–mark–recapture program (Balazs 

& Chaloupka 2004, Chaloupka & Balazs 2005, Franke et al 2013). The foraging-

ground samples were from sampling areas at Kawainui Marsh Estuary and Hanauma 

Bay, both on the Hawaiian Island of Oahu. Sampling occurred over a 16-year period 

from 1999-2014. There were a small number of growth rate measurements recorded 
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from earlier years well prior to 1999, but those measurements were not included here 

to maintain a continuous sampling period from 1999-2014. 

 

The Kawainui sampling area is located in Kailua Bay on the southeastern coast of 

Oahu. The shallow benthic habit type at Kawainui is composed mainly of pavement-

type coral reef and macroalgae (Franke et al 2013). The turtles here were all immature 

turtles with carapace length ranging from ca. 37-76 cm SCL. Hanauma Bay is a 

marine embayment formed within an extinct volcanic tuff ring located also along the 

southeast coast of Oahu. It is one of the most popular tourist destinations in Hawaii 

with more than 1 million visitors a year. It is also a Nature Preserve and a Marine Life 

Conservation District and the shallow benthic habit is pavement-type coral reef and 

macroalgae. These turtles were also immature with carapace length ranging from 38-

64 cm SCL. Turtles at both study sites were captured, marked, and released using a 

variety of methods such as scoop nets or by hand (Franke et al 2013) and double-

tagged using Passive Integrated Transponders (Balazs & Chaloupka 2004). 

 

The capture–mark-recapture profiles recorded for each turtle included: (1) carapace 

size recorded to the nearest millimeter as straight carapace length (cm SCL) at first 

capture and any subsequent recaptures, (2) year of first capture and (3) the years at 

large since first capture or previous recapture. More details on measurement methods 

can be found in Balazs & Chaloupka (2004). The fibropapilloma disease status was 

also recorded for each turtle (Chaloupka & Balazs 2005). Absolute growth rates were 

derived from the capture–mark-recapture profiles for each foraging-ground sample, 

with negative or zero growth rates included, since these are part of the measurement 

error (Balazs & Chaloupka 2004). 

https://en.wikipedia.org/wiki/Embayment


5 

 

 

Statistical modeling approach 

 

We used the GAMLSS semiparametric or generalized additive regression modeling 

approach for location, scale, and shape (Stasinopoulos & Rigby 2007), which is a 

form of structured additive distributional regression (Klein et al 2015). The GAMLSS 

approach supports the simultaneous modelling of (1) the mean (or expected) somatic 

growth rate response as a function of potentially informative covariates as well as (2) 

the variance or the dispersion of that same response also as a function of informative 

covariates. This approach was used recently to explore appropriate regression model 

structure for a study reviewing risk factors for seabird bycatch in the Hawaii-based 

pelagic longline tuna fishery (Gilman et al 2016). The covariates used here included 

mean carapace size, mean sampling year, growth increment duration, disease status, 

and the identity of each turtle (Balazs & Chaloupka 2004, Chaloupka & Balazs 2005, 

see also Bjorndal et al 2016 for modelling marine turtle growth rates within a spatio-

temporal context). 

 

The data sets in our study were limited in terms of negative growth estimates due to 

measurement error and small sample size, especially for each sampling year, so we 

used 2 different inferential procedures to fit the GAMLSS model structure given those 

data limitations: (1) direct optimization of a penalized maximum likelihood using the 

gamlss package for R (Stasinopoulos & Rigby 2007) and (2) Bayesian inference 

implemented with the Stan computation engine (Stan Development Team 2016) with 

NUTS sampling (Carpenter et al 2017) via the brms package for R (Bürkner in press).  
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The negative growth rate estimates in this study limited the range of model likelihood 

that could be used (Voudouris et al 2012). So we used a robust Student-t likelihood, 

as suggested elsewhere by Gilman et al (2016), and then we compared the Bayesian 

GAMLSS models to similar models fitted with Gaussian likelihood using leave-one-

out cross-validation (LOO-cv) via the loo package for R (Vehtari et al 2017).  

 

The GAMLSS regression models used in either framework comprised: (1) an identity 

link, (2) Student-t model likelihood to minimize outlier effects on parameter estimates 

and (3) either penalized spline or thin plate regression spline smooths (Wood 2006) to 

model any nonlinear functional form between mean turtle somatic growth rates and 

potentially informative covariates such as sampling year, turtle carapace size and the 

interval between subsequent recaptures. The somatic growth rate variance was also 

jointly modeled as a function of sampling year and turtle carapace size. We also 

included random effects (random intercepts) to account for any turtle-specific 

heterogeneity due to the variable number of growth rate measurements recorded for 

each turtle (Chaloupka & Balazs 2005, see also Bjorndal et al 2016). These are now 

referred to as random-effects GAMLSS or GAMMLSS models. 

 

GAMMLSS regression models implemented using a frequentist inferential approach 

were then evaluated for goodness-of-fit using quantile residual diagnostics (Dunn & 

Smyth 1996) and worm plots (detrended Q-Q plots) that are useful in checking the 

assumed distribution of the response variable and also for checking that the response 

distribution was fitted adequately for the range of a specific explanatory variable (van 

Buuren & Fredriks 2001). The GAMMLSS models implemented in the Bayesian 

framework used weakly informative regularizing priors (Gelman et al 2008, Park & 
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Casella 2008) with posterior samples sourced from 5 chains and 50k iterations after a 

warmup of 2000 iterations. Bayesian GAMMLSS regression model fit was displayed 

using the ggplot2 package for R (Wickham 2016) and then evaluated using graphical 

posterior predictive checking procedures (Gelman & Hill 2007, Gelman et al 2014) 

via the bayesplot package for R (Gabry 2016). We also then used LOO-cv to compare 

the GAMMLSS fits to simpler GAMM models to determine if accounting explicitly 

for variability improved model inference about the mean growth rate dynamics. 

 

 

Results and Discussion 

 

The 4 random-effects GAMLSS or GAMMLSS model fits for the 2 foraging-ground 

population samples are summarized in Table 1. Using leave-one-out cross validation 

and the LOO Information Criterion metric or LOOIC (Vehtari et al 2017), we found 

that there was no significant difference between the Bayesian GAMMLSS models 

fitted with either robust Student-t or Gaussian likelihood. So we report only the model 

summaries in Table 1 for those GAMMLSS models fitted with Student-t likelihood. 

Convergence diagnostics such as the effective posterior sample size and the Gelman-

Rubin statistic (Rhat<1.01) reflected convergence of all Bayesian models (Gelman & 

Hill 2007). 

 

The models fitted by either inferential procedure found similar results for the 

Kawainui population except for the predicted variance of the mean year effect (Table 

1). The frequentist GAMMLSS model with Student-t likelihood found that the year 

effect variability decreased from around the mid-2000s onward (Fig 1e) whereas the 
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Bayesian model found no significant variance effect for sampling year (Fig 2d, Table 

1). Model fit diagnostics based on visual inspection of residual plots (Fig 3) and worm 

plots conditioned for example on the mean carapace size predictor (Fig 4) suggest that 

the frequentist model was an adequate fit to the Kawainui growth rate data. Similarly, 

posterior predictive check tests such as key parameter summaries (Fig 5) suggest that 

the Bayesian model was also an adequate fit to the Kawainui growth rate data. The 

trends for all parameters in either model were similar but the Bayesian model 

estimates mean and variance components for the GAMMLSS model with much 

greater uncertainty than the frequentist model (compare expected curves in the panels 

of Figs 1 and 2).  

 

It is apparent using either inferential procedure that there was a significant decrease in 

growth rates for the Kawainui population attributable to severe fibropapillomatosis 

disease affliction (Figs 1a, 2a) and that both the mean (Figs 1c, 2e) and variance of 

the growth rates (Figs 1f, 2f) were linear functions of the growth increment duration 

(or the recapture duration) — with somatic growth rate variance decreasing with 

increasing increment duration due to many of the increments being for quite short 

intervals. Interestingly, while there appeared to be declining mean growth rates during 

the late 2000s (Figs 1b, 2c), this effect was not found to be a significant growth rate 

predictor using either procedure (Table 1). Similarly for the expected or mean size-

specific effect for the Kawainui population, which appeared to suggest a declining 

functional form (Figs 1d, 2b) but this effect was not significant using either procedure 

(Table 1). 
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A Bayesian GAMM model that does not account explicitly for variance in growth rate 

was also fit to the Kawainui data (Table 1). But the GAMMLSS that accounts for 

growth variability was an improved fit compared to this mean-response-only model 

(GAMMLSS LOOIC = 445.9 ± 22.8; GAMM LOOIC = 474.5 ± 23.1). None of the 

covariates were found to be significant predictors based on the GAMM (Table 1), 

even though both GAMLSSs found that affliction with severe fibropapilloma disease 

was a significant predictor of mean growth and that recapture duration (or duration of 

growth increment) was a significant predictor of both growth rate mean and variance 

(Table 1).  

 

On the other hand, the 2 inferential procedures resulted in quite different conclusions 

about significant predictors of somatic growth rates at the Hanauma Bay study site 

(Table 1). The Bayesian GAMMLSS found that growth rate variability was not a 

significant function of mean sampling year (Fig 6d) or recapture interval (Fig 6f). In 

fact it was questionable whether either mean growth or growth variability was a 

significant function of any predictors included in this model (Fig 6, Table 1).  

Graphical posterior predictive check tests such as a density overlay plot (Fig 7) of 

many simulations (replications) of the fitted model compared to the density function 

of the observed growth rates suggest that the Bayesian GAMMLSS was an adequate 

fit to the Hanauma Bay growth rate data. A graphical posterior predictive check test 

of the predicted maximum growth rate also provided strong evidence that this model 

was an adequate fit to the Hanauma Bay data (Fig 8). 

 

It is apparent then that the intercepts for the mean and variance components account 

for the modelled data with limited marginal effect due to any predictor, which is due 



10 

 

mainly to the small sample size for the Hanauma Bay population (72 growth 

increments for 31 individual immature green turtles). Given the limited sample and 

high parameter uncertainty (Fig 6), it was not considered worthwhile assessing the 

frequentist GAMMLSS fit. Moreover, a GAMM that does not account for variability 

was an improved fit to the Hanauma Bay data compared to the GAMMLSS model 

(GAMM LOOIC = 178.3 ± 12.1; GAMMLSS LOOIC = 199.5 ± 20.5). So while the 

frequentist GAMMLSS found 4 significant predictors (Table 1), this finding was not 

supported by the models fitted using Bayesian procedures — except perhaps an 

apparent decline in mean growth rates over the past 14-15 years (Fig 6c, Table 1) but 

no such trend in the variance (Fig 6d, Table 1). 
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Table 1: Model-specific summaries of parameter significance determined by either 

frequentist P<0.05 or where the Bayesian 95% credible interval doesn't include 0. 
__________________________________________________________________________ 
 

 GAMMLSS model:   GAMM model: 

  ________________________ ______________ 
 

  Study site frequentist Bayesian         Bayesian 
__________________________________________________________________________ 
 

Kawainui 
 

https://doi.org/10.3354/meps08846
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Mean terms: 
 

FP moderate no no no 

FP severe yes marginal no 

mean year no no no 

mean size no no  no 

recapture duration yes marginal no 

 

variance terms: 
 

mean year yes no 

recapture duration yes yes 

 

Hanauma Bay 
 

Mean terms: 
 

FP afflicted no no  no  

mean year yes marginal  marginal 

mean size yes no     no 

recapture duration yes no  no 

 

variance terms: 
 

mean year no no 

recapture duration yes no 
__________________________________________________________________________ 
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