Skip to main content
Log in

\(({{\,\mathrm{\mathrm {SL}}\,}}(N),q)\)-Opers, the q-Langlands Correspondence, and Quantum/Classical Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers-connections on the projective line with extra structure. In this paper, we describe a deformation of this correspondence for \({{\,\mathrm{\mathrm {SL}}\,}}(N)\). We introduce a difference equation version of opers called q-opers and prove a q-Langlands correspondence between nondegenerate solutions of the Bethe ansatz equations for the XXZ model and nondegenerate twisted q-opers with regular singularities on the projective line. We show that the quantum/classical duality between the XXZ spin chain and the trigonometric Ruijsenaars–Schneider model may be viewed as a special case of the q-Langlands correspondence. We also describe an application of q-opers to the equivariant quantum K-theory of the cotangent bundles to partial flag varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We remark that the Gaudin algebra is a subalgebra of the center of the universal enveloping algebra at the critical level, and this center was characterized in [FFR1]. Ding and Etingof have found generators of the center of the quantum affine algebra at the critical level, thereby proving the q-analogue of this statement [DE].

  2. The authors and E. Frenkel have subsequently solved this problem in the general case using different techniques [FKSZ].

  3. We refer the reader to Sect. 4 of [GK] for more information on quantum/classical duality and additional references.

  4. The terminology comes from the analogy between these polynomials and the polynomials determining the eigenvalues of the Baxter operators arising from transfer matrices [R2].

  5. The quantum K-theory discussed here is the so-called PSZ quantum K-theory [PSZ], involving quasimaps to Nakajima varieties, as opposed to the Givental–Lee approach which relies on stable maps. We refer to [SZ] for some recent progress in comparing the two approaches.

References

  1. Aganagic, M., Frenkel, E., Okounkov, A.: Quantum \(q\)-Langlands Correspondence. Trans. Moscow Math. Soc. 79, 1–83 (2018). arXiv:1701.03146

  2. Bittmann, L.: Quantum Grothendieck Rings as Quantum Cluster Algebra, J. Lond. Math. Soc., (2020) arXiv:1902.00502, https://doi.org/10.1112/jlms.12369

  3. Baranovsky, V., Ginzburg, V.: Conjugacy Classes in Loop Groups and G-Bundles on Elliptic Curves. Int. Math. Res. Not. IMRN 1996, 733–751 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bazhanov, V., Hibberd, A., Khoroshkin, S.: Integrable structure of \(\cal{W}_3\) Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory. Nucl. Phys. B 622, 475–547 (2002). https://doi.org/10.1016/S0550-3213(01)00595-8

    Article  ADS  MATH  Google Scholar 

  5. Bullimore, M., Kim, H.-C., Koroteev, P.: Defects and Quantum Seiberg-Witten Geometry. JHEP 05, 95 (2015). arXiv:1412.6081

    Google Scholar 

  6. Bazhanov, Vladimir V., Lukyanov, Sergei L., Zamolodchikov, Alexander B.: Integrable structure of conformal field theory. 3. The Yang-Baxter relation. Commun. Math. Phys. 200, 297–324 (1999). arXiv:hep-th/9805008

  7. Beketov, M., Liashuk, A., Zabrodin, A., Zotov, A.: Trigonometric version of quantum-classical duality, 2016, Nucl. Phys. B, 903, arXiv:1201.3990

  8. Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable Quasimaps to GIT Quotients. J. Geom. Phys. 75, 17–47 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ding, J., Etingof, P.: The Center of a Quantum Affine Algebra at the Critical Level. Math. Res. Lett. 1(4), 469–480 (1994). arXiv:hep-th/9403064

    Article  MathSciNet  Google Scholar 

  10. Frenkel, E.: Opers on the projective line, flag manifolds and bethe ansatz, Mosc. Math. Journal, 4, (20044) no. 3, 655–705, arXiv:math/0308269

  11. Frenkel, E.: Gaudin model and opers, Proceedings of “Infinite dimensional algebras and quantum integrable systems”., (2013) arXiv:math/0407524

  12. Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin Model, Bethe Ansatz and Critical Level. Commun. Math. Phys. 166, 27–62 (1994). arXiv:hep-th/9402022

    Article  ADS  MathSciNet  Google Scholar 

  13. Feigin, B., Frenkel, E., Rybnikov, L.: Opers with Irregular Singularity and Spectra of the Shift of Argument Subalgebra. Duke Math. J. 155, 337–363 (2010)

    Article  MathSciNet  Google Scholar 

  14. Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)

    Article  MathSciNet  Google Scholar 

  15. Frenkel, E., Hernandez, D.: Baxter’s Relations and Spectra of Quantum Integrable Models. Duke Math. J. 164(12), 2407–2460 (2015). arXiv:1308.3444

    Article  MathSciNet  Google Scholar 

  16. Frenkel, E., Hernandez, D.: Spectra of Quantum KdV Hamiltonians, Langlands Duality, and Affine Opers, Comm. in Math. Phys., 362(2), 361–414, (2018) arXiv:1606.05301

  17. Frenkel, E., Koroteev, P., Sage, D.S., Zeitlin, A.M.: q-Opers, QQ-Systems, and Bethe Ansatz, J. Eur. Math. Soc., to appear, arXiv:2002.07344

  18. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \({\cal{W}}\)-algebras, Contemp. Math., 248, Amer. Math. Soc., 163–205, (1999) arXiv:math/9810055

  19. Frenkel, E., Reshetikhin, N., Semenov-Tian-Shansky, M.: Drinfeld-Sokolov reduction for difference operators and deformations of \({\cal{W}}\)-algebras. the case of Virasoro algebra, Commun. Math. Phys., 192, 605–629, (1998)

  20. Gaiotto, D., Frenkel, E.: Quantum Langlands Dualities of Boundary Conditions, D-modules, and Conformal Blocks, (201805), arXiv:1805.00203

  21. Gaiotto, D., Koroteev, P.: On Three Dimensional Quiver Gauge Theories and Integrability. JHEP 1305, 126 (2013). arXiv:1304.0779

    Article  ADS  MathSciNet  Google Scholar 

  22. Gorbounov, V., Rimányi, R., Tarasov, V., Varchenko, A.: Quantum Cohomology of the Cotangent Bundle of a Flag Variety as a Yangian Bethe Algebra. J. of Geom. and Phys. 74, 56–86 (2013). arXiv:1204.5138

    Article  ADS  MathSciNet  Google Scholar 

  23. Gaiotto, D., Witten, E.: Knot Invariants from Four-Dimensional Gauge Theory. Adv. Theor. Math. Phys. 16(3), 935–1086 (2012). arXiv:1106.4789

    Article  ADS  MathSciNet  Google Scholar 

  24. Hernandez, D., Jimbo, M.: Asymptotic Representations and Drinfeld Rational Fractions. Comp. Math. 148(5), 1593–1623 (2012). arXiv:1104.1891

    Article  MathSciNet  Google Scholar 

  25. Halläns, M., Ruijsenaars, S.: A recursive Construction of Joint Eigenfunctions for the Hyperbolic Nonrelativistic Calogero-Moser Hamiltonians. Int. Math. Res. Not. IMRN 10278–10313, (2015)

  26. Hallnäs, M., Ruijsenaars, S.: Kernel functions and Bäcklund transformations for relativistic Calogero-Moser and Toda systems. J. Math. Phys. 53, 123512 (2012). arXiv:1206.3786

    Article  ADS  MathSciNet  Google Scholar 

  27. Kazakov, V., Leurent, S., Volin, D.: T-system on t-hook: Grassmannian solution and twisted quantum spectral curve. Journal of High Energy Physics 2016(12), (2016)

  28. Krichever, I., Lipan, O., Wiegmann, P., Zabrodin, A.: Quantum Integrable Models and Discrete Classical Hirota Equations. Communications in Mathematical Physics 188(2), 267–304 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  29. Koroteev, P., Pushkar, P., Smirnov, A., Zeitlin, A. M.: Quantum K-theory of Quiver Varieties and Many-Body Systems, (2017), arXiv:1705.10419

  30. Koroteev, P., Zeitlin, A.M.: qKZ/tRS Duality via Quantum K-Theoretic Counts, Math. Res. Lett., arXiv:1802.04463

  31. Mukhin, E., Tarasov, V., Varchenko, A.: Bethe Algebra of Gaudin Model, Calogero-Moser Space, and Cherednik Algebra. International Mathematics Research Notices 5, 1174–1204 (2014)

    Article  MathSciNet  Google Scholar 

  32. Mukhin, E., Varchenko, A.: Populations of Solutions of the XXX Bethe Equations Associated to Kac-Moody Algebras, (2002) arXiv:math/0212092

  33. Mukhin, E., Varchenko, A.: Discrete Miura Opers and Solutions of the Bethe Ansatz Equations. Commun. Math. Phys. 256, 565–588 (2005). arXiv:math/0401137

    Article  ADS  MathSciNet  Google Scholar 

  34. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14, 145–238 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nakajima, H.: Towards a Mathematical Definition of Coulomb Branches of \(3\)-Dimensional \(\cal{N}=4\) Gauge Theories. I. Adv. Theor. Math. Phys. 20, 595–669 (2016)

    Article  MathSciNet  Google Scholar 

  36. Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories, arXiv:1312.6689 (2013)

  37. Nekrasov, N., Shatashvili, S.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009). arXiv:0901.4748

    Article  ADS  Google Scholar 

  38. Nekrasov, N., Shatashvili, S.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. Proc. Suppl. 192–193, 91–112 (2009). arXiv:0901.4744

    Article  ADS  MathSciNet  Google Scholar 

  39. Okounkov, A.: Lectures on K-Theoretic Computations in Enumerative Geometry, (2015) arXiv:1512.07363

  40. Pestun, V.: Periodic Monopoles and q-Opers, Talk at String Math Conference 2017 (https://bit.ly/2zfLigO), (2017)

  41. Pushkar, P., Smirnov, A., Zeitlin, A.: Baxter Q-operator from quantum K-theory, Adv. Math., 360,106919 (2020) arXiv:1612.08723

  42. Reshetikhin, N.: The spectrum of the transfer matrices connected with Kac-Moody algebras. Lett. Math. Phys. 14, 235–246 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  43. Reshetikhin, N.: Lectures on the Integrability of the 6-Vertex Model, (2010), arXiv:1010.5031

  44. Rimanyi, R., Tarasov, V., Varchenko, A.: Trigonometric Weight Functions as K-Theoretic Stable envelope Maps for the Cotangent Bundle of a Flag Variety, arXiv:1411.0478 (2014)

  45. Semenov-Tian-Shansky, M., Sevostyanov, A.: Drinfeld-Sokolov reduction for difference operators and deformations of \({\cal{W}}\)-algebras II. The general semisimple case, Communications in Mathematical Physics, 192, 631–647, (1998) arXiv:q-alg/9702016

  46. Smirnov, A., Zhou, Z.: 3d Mirror Symmetry and Quantum \(K\)-theory of Hypertoric Varieties, (2020) arXiv:2006.00118

Download references

Acknowledgements

P.K. and A.M.Z. are grateful to the 2018 Simons Summer Workshop for providing a wonderful working atmosphere in the early stages of this Project. P.K. thanks the organizers of the program “Exactly Solvable Models of Quantum Field Theory and Statistical Mechanics” at the Simons Center for Geometry and Physics, where part of this work was done. We are also indebted to N. Nekrasov, A. Schwarz, and Y. Soibelman for stimulating discussions and suggestions. D.S.S. was partially supported by NSF Grant DMS-1503555 and Simons Collaboration Grant No. 637367, and A.M.Z. was partially supported by Simons Collaboration Grant No. 578501. P.K. is partly supported by an AMS-Simons Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton M. Zeitlin.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroteev, P., Sage, D.S. & Zeitlin, A.M. \(({{\,\mathrm{\mathrm {SL}}\,}}(N),q)\)-Opers, the q-Langlands Correspondence, and Quantum/Classical Duality. Commun. Math. Phys. 381, 641–672 (2021). https://doi.org/10.1007/s00220-020-03891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03891-1

Navigation