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Abstract
Explainability is a key requirement for text classification in
many application domains ranging from sentiment analysis
to medical diagnosis or legal reviews. Existing methods often
rely on “attention” mechanisms for explaining classification
results by estimating the relative importance of input units.
However, recent studies have shown that such mechanisms
tend to mis-identify irrelevant input units in their explanation.
In this work, we propose a hybrid human-AI approach that in-
corporates human rationales into attention-based text classi-
fication models to improve the explainability of classification
results. Specifically, we ask workers to provide rationales for
their annotation by selecting relevant pieces of text. We in-
troduce MARTA, a Bayesian framework that jointly learns
an attention-based model and the reliability of workers while
injecting human rationales into model training. We derive a
principled optimization algorithm based on variational infer-
ence with efficient updating rules for learning MARTA pa-
rameters. Extensive validation on real-world datasets shows
that our framework significantly improves the state of the art
both in terms of classification explainability and accuracy.

Introduction
Text classification is a fundamental task in natural language
processing (NLP) (Zhang, Marshall, and Wallace 2016;
Yang et al. 2016; Arras et al. 2017). State-of-the-art methods
are dominated by neural network models, which are gener-
ally considered as “black boxes” by end-users. The opaque-
ness of those models has become a major obstacle for their
development, deployment, and improvement, particularly in
critical tasks such as medical diagnosis (Lakkaraju, Bach,
and Leskovec 2016) and legal document review (Chhatwal
et al. 2018; Mahoney et al. 2019). Explainable text classifi-
cation has, therefore, emerged as an important topic, where
the goal is to present end-users with human-readable de-
scriptions of the classification rationale (Ribeiro, Singh, and
Guestrin 2016; Sundararajan, Taly, and Yan 2017; Camburu
et al. 2018; Liu, Yin, and Wang 2019).

Among existing explainability methods, a popular ap-
proach is the attention mechanism, which identifies impor-
tant parts of the input for the prediction task by providing a
distribution over attended-to input units (e.g., tokens or sen-
tences) (Xu et al. 2015; Bahdanau, Cho, and Bengio 2014).
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Attention-based models have resulted in impressive perfor-
mance across many NLP tasks including text classification,
question-answering, and entity recognition (Bahdanau, Cho,
and Bengio 2014; Parikh et al. 2016; Wang et al. 2017); in
particular, the self-attention mechanism that underlies the
Transformer architecture (Vaswani et al. 2017; Devlin et al.
2018) has been playing a central role in many NLP systems.
Despite that, recent studies have shown that the learned
attention weights are often uncorrelated with the impor-
tance of input components measured by other explainability
methods (e.g., gradients (Simonyan, Vedaldi, and Zisserman
2013)), and that one can identify different attention distribu-
tions that nonetheless yield equivalent predictions (Jain and
Wallace 2019; Wiegreffe and Pinter 2019).

A promising approach to enhance the explainability of
attention-based models is integrating human rationales as
extra supervision information for attention learning. Prior
research (Zaidan, Eisner, and Piatko 2007; Zhang, Marshall,
and Wallace 2016) has shown that human rationales repre-
sent valuable input for improving model performance and
for identifying explainable input features in model predic-
tion (Bahdanau, Cho, and Bengio 2014; Mohankumar et al.
2020). Coincidentally, recent studies in human computa-
tion (McDonnell et al. 2016) have demonstrated that asking
workers to provide annotation rationales – by highlighting
supporting text excerpts from the given text – brings no extra
annotation efforts. Human rationales are, therefore, easy-to-
obtain information with great potential in improving model
explainability and performance. Existing work (Bahdanau,
Cho, and Bengio 2014; Mohankumar et al. 2020), however,
takes human rationales as gold information that is entirely
trustworthy, which is typically not the case in practice; in-
deed, studies from human computation have found the reli-
ability of human-contributed rationales to be a key problem
that requires careful treatment (Zaidan, Eisner, and Piatko
2007; Ramı́rez et al. 2019).

In this work, we tackle the problem of rationale reliabil-
ity by introducing a human-AI computational approach that
integrates human rationales into an attention-based model
while weighing individual reliability. We crowdsource the
task of annotating documents and ask workers to justify
their labels using text excerpts from the document. We in-
troduce MARTA, a Bayesian framework that jointly learns
the workers’ reliability and the attention-based model pa-



rameters while MApping human Rationales To Attention.
The model parameters and worker reliability are updated in
an iterative manner, allowing their learning processes to ben-
efit from each other until agreements on both the label and
rationales are reached. We formalize such a learning pro-
cess with a principled optimization algorithm based on vari-
ational expectation-maximization. In particular, we derive
efficient updating rules that allow both model parameters
and worker reliability to be updated incrementally at each
iteration. In summary, we make the following contributions:
• We propose MARTA, a Bayesian framework for explain-

able text classification that integrates human rationales
into attention-based models.

• We derive an efficient learning algorithm based on vari-
ational inference with incremental updating rules for
MARTA parameter estimation.

• We conduct an extensive evaluation on two real-world
datasets and show that MARTA substantially outperforms
the state of the art by 5.76% F1-score while offering a
human-understandable explanation.

Related Work
Explainable Text Classification
Driven by the need for transparency, machine learn-
ing explainability has drawn significant attention re-
cently (Ribeiro, Singh, and Guestrin 2016; Doshi-Velez and
Kim 2017). Existing explainability methods fall into two
broad categories: post-hoc explainability and intrinsic ex-
plainability. Post-hoc explainability aims at providing ex-
planations for an existing model. A representative method is
LIME (Ribeiro, Singh, and Guestrin 2016), which approx-
imates model decisions with an explainable model (e.g., a
linear model) in the local area of the feature space. A recent
development of this topic is GEF (Liu, Yin, and Wang 2019),
which is designed to explain a generic encoder-predictor ar-
chitecture by jointly generating explanations and classifica-
tion results. Another class of methods identifies important
features by calculating the gradient of an output with re-
spect to an input feature to derive the contribution of the
various features (Simonyan, Vedaldi, and Zisserman 2013;
Ross, Hughes, and Doshi-Velez 2017; Ancona et al. 2018).
Intrinsic explainability aims at constructing self-explanatory
models. This can be achieved by adding explainability con-
straints in model learning to enforce feature sparsity (Freitas
2014), representation disentanglement (Zhang, Nian Wu,
and Zhu 2018), or sensitivity towards input features (Sun-
dararajan, Taly, and Yan 2017). Our work falls into this
second category by injecting human rationales into model
learning through a unified Bayesian framework.

To explain individual predictions, a more popular ap-
proach is attention mechanisms, which identify parts of the
input that are attended by the model for specific predictions
(Xu et al. 2015; Bahdanau, Cho, and Bengio 2014). These
attention mechanisms have been playing an important role
in NLP not only for explainability but also for the enhance-
ment they bring to model performance (Parikh et al. 2016;
Vaswani et al. 2017; Devlin et al. 2018). Their effectiveness

in explainability, however, has recently been questioned by
an empirical study, which points to the facts that attention
distributions are inconsistent with the importance of input
units as measured by gradient-based methods and that adver-
sarial distributions can be found yielding similar model per-
formance (Jain and Wallace 2019). Those findings have trig-
gered heated discussions, e.g., it has been shown that atten-
tion mechanisms attribute higher weights to important input
units for a given task even when the model architecture for
prediction changes (Wiegreffe and Pinter 2019). Our work
contributes to the discussion by showing that human ratio-
nales, when properly injected into the attention-based mod-
els, can enhance the model explainability and performance.

Human Rationale in Machine Learning
The idea of incorporating human rationales for model im-
provement can be traced back to Zaidan et al. (2007), where
a human teacher highlights pieces of text in a document as a
rationale to justify label annotation. The rationale is fused
into the loss function of an SVM classifier by constrain-
ing the prediction labels. Similar ideas have been explored
for neural network models (Zhang, Marshall, and Wallace
2016) and through different ways of human rationale inte-
gration, e.g., by learning a mapping between human ratio-
nales and machine attention (Bao et al. 2018) or ensuring the
diversity among the hidden representations learned at differ-
ent time steps (Mohankumar et al. 2020). The idea of find-
ing a small subset of input units capable of generating the
same output has resulted in various selective rationalization
techniques (Lei, Barzilay, and Jaakkola 2016; Li, Monroe,
and Jurafsky 2016; Chen et al. 2018; Chang et al. 2019; Yu
et al. 2019). Despite all existing efforts, few studies have
addressed the potential issues in human involvement, such
as controlling the quality of rationales contributed by hu-
mans with varying levels of expertise and motivation. Unlike
them, our framework offers a principled method to model
human reliability in integrating human rationales.

A separated line of research in human computation and
crowdsourcing has investigated the task design for solicit-
ing human rationales in crowdsourcing settings. When gath-
ering relevance judgments for search results, McDonnell et
al. (2016) found out that by asking crowd workers to provide
2-3 sentences of document excerpts for justification, anno-
tation quality can be largely enhanced without the task com-
pletion time being increased. However, it is also known that
the quality of human-contributed rationales remains a chal-
lenging issue, especially for subjective and complex tasks
(Zaidan, Eisner, and Piatko 2007; Ramı́rez et al. 2019).
Aligned with these works, our work offers a computational
approach that integrates human rationales for explainable
text classification while addressing the reliability issue of
rationales through a principled learning algorithm.

Method
MARTA is a unified Bayesian Framework that integrates an
attention-based model with labels and rationales contributed
by workers. In this section, we first formally define our prob-
lem, and then introduce our framework, followed by a pre-
sentation of our algorithm for learning MARTA parameters.



Problem Formulation
Notations. We use boldface lowercase letters to denote
vectors and boldface uppercase letters to denote matrices.
For an arbitrary matrix M, we use Mi,j to denote the entry
at the i-th row and j-th column. We denote the set of docu-
ments as I, the set of sentences composing all documents as
S, and the set of sentences belonging to document i as Si.
We denote the set of workers who provide noisy labels with
rationales as J . The subset of workers who label document
i is denoted as Ji. We consider binary classification and use
Ai,j = 1 to denote that a document i is classified as positive
by worker j, and Ai,j = 0 otherwise. We use Bs,j = 1 to
denote that a sentence s is selected as a rationale by worker
j. The subset of workers who select the sentence s as a ra-
tionale for their annotations is denoted as Js.
Problem Definition. Let I be a set of documents, each as-
signed to a unique binary label representing its relevance to
a topic. Each document i ∈ I is composed of a set of sen-
tences Si that can be used as rationale in determining the rel-
evance of a document to the topic. Let J be a set of workers
who annotate the documents with labels A and rationales B.
Our goal is to infer the true label of a document denoted as
zi while estimating the importance of each sentence s ∈ Si,
denoted as αs, in the inference.

The MARTA Framework
MARTA is a probabilistic framework that models the pro-
cess of worker-provided labels (i.e., A) and rationales (i.e.,
B), conditioned on the true labels (i.e., z), the importance of
rationales (i.e., α), and the reliability of workers (i.e., r). The
overall framework is depicted as a graphical model in Fig-
ure 1. In the following, we first describe how an attention-
based model is embedded into MARTA to allow the integra-
tion of human rationales, and then describe the process of
worker-provided labels and answers for their integration.

Rationale-Aware Attention Model. Given the true label
of a document zi ∈ {0, 1} as a binary variable, we model it
with a Bernoulli distribution. The underlying intuition of our
rationale-aware attention model is that the label of a docu-
ment is determined by its sentences, and that each sentence
contributes differently in determining the overall label of the
document. Formally, we have:

zi ∼ Ber(θi), θi =
∑
s∈Si

asPs, (1)

where θi is the parameter of the distribution, modeled as the
weighted sum of the sentence-level label Ps with attention
weight as. The sentence-level label Ps is predicted from the
contents of the sentence through a neural network of arbi-
trary architecture:

Ps = softmax(fWp,bp(vs)), (2)

where vs is the embedding vector of the sentence s, and
fWp,bp(vs) models the output of the network layers pre-
ceding the softmax layer, parameterized by Wp and bp and
shared across all sentences.

To model the attention weight as for each sentence, we
use a Bidirectional LSTM (BiLSTM) (Schuster and Pali-
wal 1997) to account for the sequential dependencies among

Ai,j

Bs,jαszi

Wp Wa
vs

rj

m
n

Worker

Document

Figure 1: Graphical representation of MARTA. Double
(greyed) circles represent observed variables, while single
circles represent latent variables. Squares represent model
parameters. Edges represent conditional relationships in text
classification. On the left side, an attention-based model pa-
rameterized by {Wa,Wp} predicts the label zi for a doc-
ument. Each document is composed of sentences vs, with
an importance αs in the classification. On the right side, a
worker is represented with her reliability distribution rj with
parameters m and n. The work annotates a document with
label Ai,j and rational Bs,j .

sentences. Specifically, each sentence vector is transformed
into a hidden vector hs through BiLSTM:

hs = BiLSTM(vs). (3)

Then, the attention weight of a sentence is modeled through
a fully-connected layer and a softmax normalization:

as = softmax(h′
s), h

′
s = tanh (Wahs + ba). (4)

Finally, we model if a sentence can be viewed as a rationale
for the document label as a binary variable αs ∈ {0, 1} that
follows a Bernoulli distribution, parameterized by as:

αs ∼ Ber(as). (5)

Integrating Labeling Rationales. We represent worker
reliability by rj ∈ [0, 1] where rj = 1 indicates that the
worker is fully reliable and rj = 0 otherwise. In practice,
we would like to measure our confidence for an estimate rj
as dependent on the number of answers of worker j, i.e., the
more annotations a worker provides, the more confident we
would like to be about her reliability estimate rj . To quan-
tify the confidence of our estimates, we adopt a Bayesian
treatment of rj by modeling it with a Beta distribution:

rj ∼ Beta(m,n), (6)

where m and n are the parameters of the distribution.
We use the reliability of a worker to define the likelihood

of her rationale being a true support of the document label:

p(Bs,j |αs, rj) = r
1[αs=Bs,j ]

j (1− rj)1[αs 6=Bs,j ], (7)

where 1[·] is an indicator function returning 1 if the state-
ment is true and 0 otherwise.

Similarly, we use the reliability of a worker to define the
likelihood of her provided label being the true label:

p(Ai,j |zi, rj) = r
1[zi=Ai,j ]

j (1− rj)1[zi 6=Ai,j ]. (8)



Variational Inference
Learning the parameters of MARTA resorts to maximizing
the following likelihood function:

p(A,B) =

∫
p(A,B, z, r, α, |W,V)dz, r, α, (9)

where z, r and α are latent variables, W represents the set
of parameters of the model, i.e. W = {Wa,Wp}, and V
is the embedding of all the sentences composing the docu-
ments. Since Eq.(9) contains more than one latent variable,
it is computationally infeasible to optimize (Tzikas, Likas,
and Galatsanos 2008). Therefore, we consider the log of our
likelihood function, i.e.,

log (p(A,B))

=

∫
q(z, r, α) log

p(A,B, z, r, α|W,V)

q(z, r, α)
dz, r, α︸ ︷︷ ︸

L(W,q)

+

∫
q(z, r, α) log

q(z, r, α)

p(z, r, α|A,B,W,V)
dz, r, α︸ ︷︷ ︸

KL(q||p)

, (10)

where q(z, r, α) is any probability density function and
KL(·) is the KL divergence between two distributions.
By doing so, the two parts of the objective func-
tion can then be optimized iteratively with a varia-
tional expectation-maximization method (Tzikas, Likas, and
Galatsanos 2008). Specifically, we iterate between two
steps: 1) the E-step, where we approximate the latent vari-
ables p(z, r, α|A,B,W,V) with the variational distribution
q(z, r, α), by minimizing the KL-divergence. 2) the M-step,
where we maximize the term L(W, q) given the newly in-
ferred latent variables.

E step. We use the mean field variational inference ap-
proach (Blei, Kucukelbir, and McAuliffe 2017) by assuming
that q(z, r, α) factorizes over the latent variables.

q(z, r, α) =
∏
i

q(zi)
∏
s

q(αs)
∏
j

q(rj). (11)

To minimize the KL divergence, we choose following forms
for the factor functions:

q(zi)=Ber(θi); q(αs)=Ber(as); q(rj)=Beta(mj , nj), (12)

where θi, as, mj and nj are variational parameters used to
minimize the KL divergence. The latter can be minimized by
updating one latent variable at a time and keeping all others
fixed.

In the following, we derive the updating rules for q(zi),
q(αs) and q(rj). To do so, we simplify Eq.(10) and obtain
for each latent variable the following inference equations:

q(zi)=
∏

s∈Si,j∈Ji

p(zi|vs,W)gq(rj)(p(Ai,j |zi, rj)),

q(αs)=
∏
j∈Js

p(αs|vs,Wa)gq(rj)(p(Bs,j |αs, rj)),

q(rj)=
∏

i∈Ij ,s∈Sj

p(rj)gq(zi,αs)(p(Ai,j |zi, rj)p(Bs,j |αs, rj)),

(13)

where Si are the sentences in a document i.Ji andJs are the
workers annotating document i and those choosing sentence
s as a rationale, respectively. Ij and Sj are the documents
annotated by worker j and the sentences chosen by her as
rationales, respectively. We use gx(·) to denote the expo-
nential of expectation term exp {Ex[log(·)]} with x being a
variational distribution. With the above equations, we obtain
the updating rules for all latent variables. We first give the
updating rules of the document label zi and the sentence’s
importance αs by the following lemmas.

Lemma 1 (Incremental Document Classification). The true
label distribution q(zi) can be incrementally computed us-
ing the predicted label by the attention-based model θi, and
the parameters mj and nj of the worker reliability distribu-
tion rj .

q(zi = 1) ∝{
θi
∏
j∈Ji

exp {Ψ(nj)−Ψ(mj + nj)}, if Ai,j = 0,
θi
∏
j∈Ji

exp {Ψ(mj)−Ψ(mj + nj)}, if Ai,j = 1,

(14)

where Ψ is the Digamma function. If q(zi = 0) then we
replace θi by 1− θi.

Lemma 2 (Incremental Sentence Importance). The impor-
tance of a sentence for document classification can be incre-
mentally computed using the attributed attention weight by
the attention-based model as and the parametersmj and nj
of the worker reliability distribution rj .

q(αs = 1) ∝{
as
∏
j∈Js

exp {Ψ(nj)−Ψ(mj + nj)}, if Bs,j = 0,
as
∏
j∈Js

exp {Ψ(mj)−Ψ(mj + nj)}, if Bs,j = 1.

(15)

Next, we show the updating rule for the worker reliability
q(rj) with the following lemma.

Lemma 3 (Incremental Worker Reliability). The worker re-
liability distribution q(rj) can be incrementally computed
using her annotation and rationale quality, and the reliabil-
ity parameters mj and nj from the previous iteration.

q(rj) ∝{
Beta(m′

j+
∑
s∈Sj

(1− as), n′
j+
∑
s∈Sj

as), if Bs,j = 0,

Beta(m′
j+
∑
s∈Sj

as, n
′
j+
∑
s∈Sj

(1− as)), if Bs,j = 1,

(16)

where m′
j=mj+

∑
i∈Ij

θi and n′j=nj+
∑
i∈Ij

(1−θi),
if Ai,j=1 and m′

j=mj+
∑
i∈Ij

(1 − θi) and
n′j=nj+

∑
i∈Ij

θi, if Ai,j=0.

Due to page constraints, we provide proofs for all lemmas
in the appendix (Arous et al. 2020).

M step. Given the true labels of the documents, the im-
portance of sentences, and the worker reliability inferred by
the E-step, the M-step maximizes the first term of Eq.(10) to



Algorithm 1: Learning MARTA Parameters
Input : A,B,Si (∀i ∈ I)
Output : Variational distributions: q(zi), q(αs) and

q(rj)
Initialize: MARTA parameters: θi, mj , nj ,W

1 while Eq. (10) has not converged do
2 for i ∈ I do
3 update q(zi) using Lemma 1;
4 update q(αs) using Lemma 2;
5 for j ∈ J do
6 update q(rj) using Lemma 3;
7 for i ∈ I do
8 UpdateW;

learn the parametersW = {Wa,Wp}.

L(W, q) =

∫
q(z, α, r) log [p(A,B, z, α, r|V,W)]dr + C1

=
∑
zi

q(zi) log[p(zi|V;Wa,Wp)]︸ ︷︷ ︸
T1

+
∑
αs

q(αs) log[p(αs|vs;Wa)]︸ ︷︷ ︸
T2

+C1 + C2, (17)

where C1 = exp {Eq(z,α,r)[log(( 1
q(z,α,r) )] is a constant and

C2 are the terms that do not depend on the parameters W .
The term T1 is equivalent to the inverse of the cross en-
tropy between the target labels of a document q(zi) and the
predicted label p(zi|V;Wa,Wp). Similarly, the term T2 is
equivalent to the inverse of the cross entropy between the
indication of a sentence as a rationale and the predicted im-
portance p(αs|vs;Wa). Given the shared parameterWa, we
minimize the prediction loss T1 together with the loss T2.

Algorithm
The overall optimization algorithm is given in Algorithm 1.
We initialize MARTA’s parameters and iterate between an
E step (rows 2-6) and an M-step (rows 7-8). The E-step
consists of updating the variational distribution of the doc-
ument labels, the sentence importance and the worker reli-
ability. Our framework is semi-supervised in the sense that
when ground truth labels are available, we fix them in the E-
step. The M steps consists in updating the parameters of the
attention-based model by jointly learning the document la-
bels and the sentence’s importance. It is worth noting that for
this step, the loss between human rationales and the atten-
tion generated by the model is minimized. The convergence
is reached when the documents label q(zi) and the sentences
relevance q(αs) are no longer modified by the workers’ re-
liability and the model’s parameters stabilize.

The iterations through the documents (rows 2-4) yields a
time complexity of |I|while the iterations through the work-
ers (rows 5-6) yields a time complexity of |J |. The overall

Dataset #Docs %Positive #Judgments #Workers
Wiki-Tech 1413 17.26% 4488 58
Amazon 400 50% 6744 449

Table 1: Datasets Description

complexity of our algorithm isO(#iter×(|I|+|J |+CW )),
where #iter is the number of iterations needed to con-
verge and CW is the complexity of learning the parameters
W = {Wa,Wp} of the attention-based model.

Experiments
Experimental Setup
Datasets. We use two datasets for our experiments: Wiki-
Tech and Amazon1. Wiki-Tech contains 1413 Wikipedia ar-
ticles with expert annotations on their relevance with re-
spect to the topic “technologies commonly used by compa-
nies”. We crowdsourced this dataset to collect worker ra-
tionales. Amazon is developed and published by Ramı́rez
et al. (2019). It contains 400 reviews with ground truth labels
about “reviews written about books”; this dataset is released
with worker’s rationales. Key statistics about both datasets
are reported in Table 1.
Crowdsourcing Task. Worker annotations in Wiki-Tech
were collected through a crowdsourcing task that we pub-
lished on Amazon Mechanical Turk2. We asked workers the
following predicate: Does the Wikipedia article describe a
technology commonly used by companies?. We chose work-
ers with a HIT approval rate above 70%. The task started by
explaining the concept of “Technology” and provided a pos-
itive and a negative example. Then, workers were asked to
annotate the article and provide a snippet from the text as a
justification. Workers took on average 1 minute to complete
the task and were rewarded 16 cents per answer (we made
sure that we pay over 8USD per hour). The crowdsourcing
task used to collect the Amazon dataset consisted in asking
workers: Is this review written on a book? The full experi-
ment is described in length in (Ramı́rez et al. 2019).
Representation Learning. The inputs of our machine learn-
ing model are the sentences from the documents. We rep-
resent each sentence as a fixed-size vector vs by leverag-
ing pre-trained language models. We use SciBERT as pre-
trained word embeddings for Wiki-Tech since the language
in Wikipedia is formal and contains scientific terms and AL-
BERT for Amazon as it contains reviews with less formal
language compared to the documents used to train SciBERT.
Considering the size of the datasets, we use a neural network
with one fully-connected layer for sentence-level label pre-
diction (Eq. (2)).
Comparison Methods. We compare our approach to a wide
range of baselines. First, we compare against a set of recent
text classification methods: 1) MILNET (Angelidis and La-
pata 2018), a Multiple Instance Learning (MIL) neural net-
work model. 2) fastText (Joulin et al. 2017), a linear model

1Source code and data are available at https://github.com/
eXascaleInfolab/MARTA.

2https://www.mturk.com/



Method Wiki-Tech Amazon
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MILNET 0.683 0.340 0.890 0.490 0.840 0.850 0.820 0.840
fastText 0.829 0.521 0.268 0.349 0.780 0.750 0.888 0.804
SciBERT 0.779 0.440 0.970 0.600 0.920 0.940 0.900 0.92
ALBERT 0.882* 0.708 0.560 0.618* 0.946 0.960* 0.932 0.946
LSTM-ortho 0.799 0.464 0.829 0.590 0.822 0.699 0.756 0.725
LSTM-diversity 0.649 0.365 0.928* 0.506 0.952* 0.960* 0.944 0.952*
InvRAT 0.717 0.220 0.210 0.230 0.720 0.750 0.720 0.710
RA-CNN 0.813 0.428 0.442 0.432 0.667 0.652 0.68 0.661
MARTA 0.886 0.660* 0.700 0.680 0.960 0.980 0.940* 0.960

Table 2: Performance (Accuracy, Precision, Recall and F1-score) comparison with baseline methods. The best performance is
highlighted in bold; the second best performance is marked by ‘*’.

for text classification that uses bags of n-grams as addi-
tional features to capture information about the local word
order. 3) SciBERT (Beltagy, Lo, and Cohan 2019), a lan-
guage model trained on scientific text consisting of scholar
papers from the computer science and biomedical domains.
4) ALBERT (Lan et al. 2019), a pre-trained language model
that takes into account the inter-sentence coherence, which
allows to capture fine-grained information in documents.

In addition, we compare against rational-aware models:
1) LSTM-ortho and LSTM-diversity, both proposed in (Mo-
hankumar et al. 2020). These methods extend an LSTM
to learn diverse hidden representations at different time
steps through an orthogonality and a diversity constraint
for hidden states. 2) InvRat (Chang et al. 2020), a game-
theoretic approach that is designed to identify and remove
features with spurious correlation with the output. 3) RA-
CNN (Zhang, Marshall, and Wallace 2016), a sentence-level
convolutional model that estimates the probability of a given
sentence being a rationale. We note that the LSTM vari-
ants (LSTM-ortho and LSTM-diversity) and InvRat gen-
erate rationales automatically from the models, while RA-
CNN uses the rationale provided by workers. In our exper-
iment, we use the sentences indicated by the majority of
workers as rationales to train RA-CNN.
Evaluation Protocol. We split the datasets into training, val-
idation, and test sets. We use 50% of the data for training and
the rest for validation and test with equal split. We report the
average over 10 runs for each method. Note that we only use
worker’s annotations and rationales in the training and vali-
dation sets. We use accuracy, precision, recall and F1-score
over the positive class to measure the performance. Higher
values indicate better performance.

Results and Discussion
Table 2 summarizes the performance of MARTA against
baseline methods on both Wiki-Tech and Amazon.

First, we observe that ALBERT and SciBERT perform
relatively well compared to the other baseline methods,
especially on the Wiki-Tech dataset. Recall that both AL-
BERT and SciBERT leverage textual context for represen-
tation learning, which is useful in fine-grained classifica-
tion tasks, such as Wiki-Tech where the model has to capture

the relationship between technologies and companies. Sec-
ond, we observe that among the rationale-aware models, the
two LSTM variants, i.e., LSTM-ortho and LSTM-diversity,
achieve the highest performance. This confirms the advan-
tage of attention mechanisms and shows the effectiveness
of learning non-redundant hidden states for model perfor-
mance. We also observe that RA-CNN, which uses human
rationales, does not necessarily perform well. This is prob-
ably due to the way textual data is handled by RA-CNN: as
opposed to the LSTM variants where the sequential order in
the textual data is modeled (with attention), the textual data
is considered as independent tokens by RA-CNN, which can
lead to a loss of contextual meaning.

Most importantly, MARTA achieves the best performance
in terms of accuracy and F1-score on both datasets. Over-
all, it improves ALBERT by 0.97% accuracy and 5.76% F1-
score and LSTM-diversity by 18.68% accuracy and 17.61%
F1-score on average on both datasets. To further confirm that
our way of integrating human rationales is effective, we con-
ducted an ablation study comparing MARTA to a simpli-
fied version with only the attention-based model (with pre-
trained sentence embeddings). Results show that MARTA
improves the performance by 23% accuracy and 28% F1-
score in the Wiki-Tech dataset and by 12.5% accuracy and
F1-score in the Amazon dataset. Such a result underlines the
effectiveness of weighting the reliability of human rationales
when integrating them into attention-based models.

MARTA Properties
In addition to better classification performance, MARTA ex-
hibits a number of properties highly desirable in terms of
accountability and deployment. In the following, we present
some of these properties.
Explainability. MARTA provides explanations to classifi-
cation results by incorporating human rationales. A compar-
ison of the overlap between the rationales chosen by anno-
tators and those highlighted by MARTA shows a recall of
71.1% on the Wiki-Tech dataset and 61.3% on the Amazon
dataset, which is respectively 45.1% and 22.6% higher than
the attention-based model alone. The precision is 21.7% on
Wiki-Tech and 27.0% on Amazon. These results are due to
the fact that MARTA typically tends to select multiple rel-



(a) Microwave transmission is the transmission of information by microwave radio waves. Although an experimental 40-mile
(64 km) microwave telecommunication link across the English Channel was demonstrated in 1931, the development of radar in World War II
provided the technology for practical exploitation of microwave communication. In the 1950s, large transcontinental microwave relay networks,
consisting of chains of repeater stations linked by line-of-sight beams of microwaves were built in Europeand America to relay long distance
telephone traffic and television programs between cities. Communication satellites which transferred data between ground stations by microwaves
took over much long distance traffic in the 1960s. In recent years, there has been an explosive increase in use of the microwave spectrum by
new telecommunication technologies such as wireless networks, and direct-broadcast satellites which broadcast television and radio directly into
consumers’ homes.

(b) In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature.
The novel tells the story of a simple lass from the north of Iceland who comes face to face with the duplicity of politicians who sell out Icelandic
sovereignty for the sake of a nuclear station during the cold war. She also comes to some realizations about herself and the importance
of social class and knowledge and how these interact in today’s modern world. The novel will be of very special interest to those with
some knowledge of Iceland and its history. For those without such knowledge, the novel will compel you to learn more about this fascinating
country and its wonderful author laureate, Halldor Laxness.

Figure 2: Examples from the Wiki-Tech (a) and Amazon (b) datasets. Bold letters refer to the weight attributed by an attention-
based model. Italic letters indicate a rationale given by a worker. The shades of green refer to the weights given by MARTA: a
stronger shade means a higher weight.

evant sentences as a rationale, while workers tend to se-
lect only one sentence. Figure 2 shows two examples from
the test sets of the Wiki-Tech and the Amazon datasets, re-
spectively. The first example describes a technology used
by companies. The attention-based model attributes a high
weight to the first sentence (in bold), which defines the
concept as a technology but not as used by companies. In
comparison, our framework attributes high weights to the
last two sentences given as rationales by workers (in italic),
as they clearly show the relationship between the technol-
ogy and companies. In addition, MARTA attributes a high
weight to the second sentence that is relevant to the task.
These results show that MARTA learns to generalize from
human rationales how to identify important sentences. We
observe similar results in the example from the Amazon
dataset: our framework identifies both worker-provided ra-
tionales and other relevant sentences for the task.

Adjustable Supervision Degree. Our framework is highly
effective even with a relatively small amount of ground truth
labels for training. In what follows, we study the impact of
the supervision degree to determine the minimum amount of
ground truth needed. We split our datasets by sdeg where we
vary sdeg between 10% and 90%, where sdeg = 50% means
that we use 50% of the ground truth labels for training. We
compare with a variant of our model with only the attention-
based model described in the Method section. The results are
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Figure 3: Performance of MARTA with varying s deg.

shown in Figure 3. We observe that the performance of our
framework increases along with the increase of sdeg on the
Wiki-Tech data while it is overall stable for the Amazon data.
This shows that the amount of ground truth needed to train
our framework varies across tasks: compared with Amazon,
Wiki-Tech is a more complex task that requires the model to
capture fine-grained information; consequently, it requires
more labels in model training. We observe that MARTA has
better performance than the attention-based model starting
from a supervision degree of 30% on the Wiki-Tech dataset
and 10% on the Amazon dataset. This on one hand, con-
firms the effectiveness of integrating human rationales for
model performance. On the other hand, the fact that a small
proportion of labels (less than 30%) does not help to im-
prove model performance on the Wiki-Tech dataset indicates
that when the task is complex, a small proportion of ground
truth labels might not be sufficient to correctly identify the
workers’ reliability, and that the benefits of having the labels
might be over-weighted by the disadvantage of the extra pa-
rameters to be learned in that case.

In addition, we measure the performance variation across
10 runs with different data split for each s deg. The results
are shown in Figure 3, where the standard deviation is 0.023
and 0.011 on average on Wiki-Tech and Amazon, respec-
tively. The standard deviation is small compared to the ab-
solute accuracy which demonstrates MARTA’s robustness.

Conclusion
In this paper, we presented MARTA, a Bayesian frame-
work leveraging human rationales to improve the perfor-
mance of attention-based models and provide a human-
understandable explanation of classification results. Our
proposed method incrementally updates the attention dis-
tribution by learning from human rationales while tak-
ing into account the workers’ reliability. Extensive vali-
dation on two real-world datasets shows that MARTA is
an effective and robust framework that substantially out-
performs state-of-the-art methods while providing better,
human-understandable explanations.
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