Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assessing placement bias of the global river gauge network

Abstract

Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are distributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of socioecological, hydrologic, climatic and physiographic diversity of rivers. We find that gauges are located disproportionally in large, perennial rivers draining more human-occupied watersheds. Gauges are sparsely distributed in protected areas and rivers characterized by non-perennial flow regimes, both of which are critical to freshwater conservation and water security concerns. Disparities between the geography of the global gauging network and the broad diversity of streams and rivers weakens our ability to understand critical hydrologic processes and make informed water-management and policy decisions. Our findings underscore the need to address current gauge placement biases by investing in and prioritizing the installation of new gauging stations, embracing alternative water-monitoring strategies, advancing innovation in hydrologic modelling, and increasing accessibility of local and regional gauging data to support human responses to water challenges, both today and in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of stream gauges with four examples.
Fig. 2: Comparison of currently gauged river segments to the GRADES dataset according to geospatial attributes.
Fig. 3: Bias in the gauge network.
Fig. 4: Estimated global mean bias change from gauge installation.

Similar content being viewed by others

Data availability

All data from this study are available at https://doi.org/10.17605/OSF.IO/NYA8R.

Code availability

R scripts used in this study are available from the Dry Rivers GitHub page at https://github.com/dry-rivers-rcn/G4.

References

  1. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  CAS  Google Scholar 

  2. Ruhi, A., Messager, M. L. & Olden, J. D. Tracking the pulse of the Earth’s fresh waters. Nat. Sustain. 1, 198–203 (2018).

    Article  Google Scholar 

  3. Pearson, C. Short- and medium-term climate information for water management. World Meteorol. Organ. Bull. 57, 173–177 (2008).

    Google Scholar 

  4. Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H. & Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 53, 2598–2604 (2017).

    Article  Google Scholar 

  5. Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2011).

    Article  Google Scholar 

  6. Shrestha, S., Kazama, F. & Newham, L. T. H. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ. Model. Softw. 23, 182–194 (2008).

    Article  Google Scholar 

  7. Lepistö, A., Futter, M. N. & Kortelainen, P. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob. Change Biol. 20, 1225–1237 (2014).

    Article  Google Scholar 

  8. Hester, G., Ford, D., Carsell, K., Vertucci, C. & Stallings, E. A. Flood Management Benefits of USGS Streamgaging Program (National Hydrologic Warning Council, 2006).

  9. Xu, H., Xu, C.-Y., Chen, H., Zhang, Z. & Li, L. Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol. 505, 1–12 (2013).

    Article  Google Scholar 

  10. Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B. & Eng, K. A National Streamflow Network Gap Analysis (USGS, 2013).

  11. Deweber, J. T. et al. Importance of understanding landscape biases in USGS gage locations: implications and solutions for managers. Fisheries 39, 155–163 (2014).

    Article  Google Scholar 

  12. Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    Article  Google Scholar 

  13. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  Google Scholar 

  14. Olden, J. D. et al. Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology. https://doi.org/10.1002/eco.2282 (2021).

  15. Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).

    Article  Google Scholar 

  16. Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Article  Google Scholar 

  17. Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9,372 catchments. J. Clim. 33, 1299–1315 (2020).

    Article  Google Scholar 

  18. Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)—part 1: the production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 10, 765–785 (2018).

    Article  Google Scholar 

  19. Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    Article  Google Scholar 

  20. Dobrushin, R. L. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970).

    Article  Google Scholar 

  21. Schefzik, R., Flesch, J. & Goncalves, A. Fast identification of differential distributions in single-cell RNA-sequencing data with waddR. Bioinformatics 37, 3204–3211 (2021).

    Article  CAS  Google Scholar 

  22. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  Google Scholar 

  23. Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).

    Article  CAS  Google Scholar 

  24. Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem Services. Fisheries 44, 73–91 (2019).

    Article  Google Scholar 

  25. Chen, K. & Olden, J. D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 26, 4952–4965 (2020).

    Article  Google Scholar 

  26. Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).

    Article  CAS  Google Scholar 

  27. Sauquet, E. et al. Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: a global perspective. J. Hydrol. 597, 126170 (2021).

    Article  Google Scholar 

  28. Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).

    Article  CAS  Google Scholar 

  29. Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).

    Article  Google Scholar 

  30. Wilhite, D. A. in Coping with Drought Risk in Agriculture and Water Supply Systems: Drought Management and Policy Development in the Mediterranean, Vol. 26 (eds. Iglesias, A. et al.) 3–19 (Springer Science and Business Media, 2009).

  31. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  32. Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184 (1995).

    Article  Google Scholar 

  33. Hammond, J. C. et al. Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).

    Article  Google Scholar 

  34. Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article  CAS  Google Scholar 

  35. Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).

    Article  Google Scholar 

  36. Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

    Article  Google Scholar 

  37. Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

    Article  CAS  Google Scholar 

  38. Beaufort, A., Lamouroux, N., Pella, H., Datry, T. & Sauquet, E. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks. Hydrol. Earth Syst. Sci. 22, 3033–3051 (2018).

    Article  Google Scholar 

  39. Argerich, A. et al. Comprehensive multiyear carbon budget of a temperate headwater stream: carbon budget of a headwater stream. J. Geophys. Res. Biogeosci. 121, 1306–1315 (2016).

    Article  CAS  Google Scholar 

  40. Molden, D. J., Shrestha, A. B., Nepal, S. & Immerzeel, W. W. in Water Security, Climate Change and Sustainable Development (eds. Biswas, A. K. & Tortajada, C.) 65–82 (Springer, 2016).

  41. Kaletová, T. et al. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services—a Mediterranean case study. Int. J. Environ. Res. Public Health 16, 2693 (2019).

    Article  Google Scholar 

  42. Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).

    Article  Google Scholar 

  43. Wine, M. L. Toward strong science to support equitable water sharing in securitized transboundary watersheds. Biologia 9, 907–915 (2020).

    Article  Google Scholar 

  44. Alsdorf, D. E. GEOPHYSICS: tracking fresh water from space. Science 301, 1491–1494 (2003).

    Article  CAS  Google Scholar 

  45. Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

    Article  CAS  Google Scholar 

  46. Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. https://doi.org/10.1086/701483 (2019).

  47. Joo, H. et al. Optimal stream gauge network design using entropy theory and importance of stream gauge stations. Entropy 21, 991 (2019).

    Article  Google Scholar 

  48. Vörösmarty, C. et al. Global water data: a newly endangered species. Eos 82, 54–58 (2001).

    Article  Google Scholar 

  49. Jordahl, K. et al. Geopandas/geopandas. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).

  50. Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).

    Article  Google Scholar 

  51. Yu, S. et al. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 24, 5279–5295 (2020).

    Article  CAS  Google Scholar 

  52. Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193 (2010).

    Article  Google Scholar 

  53. Flow/No Flow Observations with Discharge Data from Probabilistic Stream Surveys (US EPA Office of Research and Development, 2021).

  54. Rosenbaum, P. R. & Rubin, D. B. The bias due to incomplete matching. Biometrics 41, 103–116 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is a product of the Dry Rivers Research Coordination Network, which was supported by funding from the US National Science Foundation (DEB-1754389 and 2207232 to D.C.A.). Although this work was reviewed by the USEPA and approved for publication, it does not necessarily reflect official USEPA policy. This work has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices (https://pubs.usgs.gov/circ/1367/). Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

G.H.A., J.D.O., C.A.K., S.E.G., P.L., R.M.B., A.G.D., D.C.A., K.M.F., M.S., M.A.Z., T.D., W.K.D., C.N.J., J.C.H., M.C.M., S.Z., A.J.B., K.H.C. and A.S.W. conceived the study. P.L., H.E.B., K.M.F. and M.S. contributed data. J.D.O., G.H.A., P.L., C.A.K., C.F. and C.N.J. conducted analyses. G.H.A., J.D.O., C.A.K. and P.L. constructed visualizations. C.A.K., J.D.O., G.H.A. and S.E.G. drafted the manuscript, and all authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Corey A. Krabbenhoft.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jefferson DeWeber, Hong Do and Yin-phan Tsang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–3 and Methods.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krabbenhoft, C.A., Allen, G.H., Lin, P. et al. Assessing placement bias of the global river gauge network. Nat Sustain 5, 586–592 (2022). https://doi.org/10.1038/s41893-022-00873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00873-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene