Skip to main content

Advertisement

Log in

Advances in Brazil Nut Tree Ecophysiology: Linking Abiotic Factors to Tree Growth and Fruit Production

  • PHYSIOLOGICAL PROCESSES (M MENCUCCINI, SECTION EDITOR)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

This article has been updated

Abstract

Purpose of the Review

The Brazil nut tree (Bertholletia excelsa) is a symbolic tree in the Brazilian Amazonian. In a broad sense, it plays a crucial role in its social, economic, and environmental importance. This species contributes on a large scale to the equilibrium of the biological processes related to the biogeochemical cycles in the Amazon biome, and its nuts sustain a multi-million-dollar extractive economy, which supports small farmers and traditional populations. Brazil nut is also becoming one of the most important species in silviculture and is increasingly used in agroforestry systems and the recovery of degraded areas. In this review, we deepened our understanding of the growth performance of the Brazil nut tree and its ecophysiological traits, both in native trees and commercial forest plantations. Based on the literature for this species, we discuss the concepts of plasticity and other functional traits that may help to increase Brazil nut plantation and conservation, which in turn will increase nut production, forest sustainability, and social welfare.

Recent Findings

The Brazil nut tree is a dominant species and is found throughout the Amazon region. Due to its ecophysiological traits, it can be cultivated as a commercial monoculture, in the enrichment of forest plantations, used in the recovery of degraded areas and the implementation of agroforestry systems. Recent evidence suggests that their dominance of natural forests and their high functional performance under cultivated conditions may be associated with their physiological plasticity and tolerance to abiotic stresses.

Summary

Aspects related to phenotypic variation, genetic diversity, population characteristics, cultivation, and ecophysiological performance of Bertholletia excelsa are revised and linked to growth and nut production. We demonstrate that Brazil nut exhibits phenotypical plasticity in response to light, water, and nutrient availability. This trait can be explored for improvements in nut production in native trees and agroforestry plantations. In both cases, the availability of these resources influences population structure, tree growth, and fruit production. These results reinforce the importance of the use of Brazil nut tree as an attractive alternative for improving programs that involve the recovery of degraded areas in the continental Amazon. Lastly, the ecophysiological performance of the Brazil nut tree suggests its resilience to environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 27 February 2022

    The original version of this paper was updated to incorporate author's additional corrections.

References

  1. Pärssinen M, Ferreira E, Virtanen PK, Ranzi A. Domestication in motion: macrofossils of pre-colonial Brazilian nuts, palms and other Amazonian planted tree species found in the Upper Purus. Environ Archaeol. 2020;26:309–22. https://doi.org/10.1080/14614103.2020.1765295.

    Article  Google Scholar 

  2. Guariguata MR, Cronkleton P, Duchelle AE, Zuidema PA. Revisiting the ‘cornerstone of Amazonian conservation’: a socioecological assessment of Brazil nut exploitation. Biodivers Conserv. 2017. https://doi.org/10.1007/s10531-017-1355-3.

    Article  Google Scholar 

  3. Fauset S, Johnson MO, Gloor M, Baker TR, Monteagudo MA, Brienen RJW, et al. Hyperdominance in Amazonian forest carbon cycling. Nat Commun. 2006. https://doi.org/10.1038/ncomms7857.

    Article  Google Scholar 

  4. Shackleton CM, Ticktin T, Cunningham AB. Nontimber forest products as ecological and biocultural keystone species. Ecol Soc. 2018. https://doi.org/10.5751/ES-10469-230422.

    Article  Google Scholar 

  5. Mori SA. Brazil nut (Bertholletia excelsa). Encycl. Earth. 2014. https://editors.eol.org/eoearth/wiki/Brazil_nut_(Bertholletia_excelsa). Accessed 25 Jan 2021.

  6. Mori SA. Report corrections to Scott A. Mori. New York Botanical Garden. 2018. http://www.nybg.org/botany/mori/lecythidaceae/publications/PLANTAE_EQUIN/Bonpland_main.htm. Accessed 25 Jan 2021.

  7. Ferreira MJ, Goncąlves JFDC, Ferraz JBS, Correâ VM. Características nutricionais de plantas jovens de Bertholletia excelsa Bonpl. sob tratamentos de fertilização em área degradada na Amazônia. Sci For Sci. 2015; https://doi.org/10.18671/scifor.v43n108.11

  8. Ferreira MJ, de Gonçalves JFC, Ferraz JBS, dos Santos Junior UM, Rennenberg H. Clonal variation in photosynthesis, foliar nutrient concentrations, and photosynthetic nutrient se efficiency in a Brazil Nut (Bertholletia excelsa) Plantation. For Sci. 2016;62:323–32. https://doi.org/10.5849/forsci.15-068.

    Article  Google Scholar 

  9. Schroth G, do da Mota MS, de Elias MEA. Growth and nutrient accumulation of Brazil nut trees (Bertholletia excelsa) in agroforestry at different fertilizer levels. J For Res. 2015;26:347–53. https://doi.org/10.1007/s11676-015-0037-9.

    Article  CAS  Google Scholar 

  10. Schimpl FC, Ferreira MJ, Jaquetti RK, Martins SCV, Gonçalves JFC. Physiological responses of young Brazil nut (Bertholletia excelsa) plants to drought stress and subsequent rewatering. Flora. 2019. https://doi.org/10.1016/j.flora.2019.02.001.

    Article  Google Scholar 

  11. Costa KCP, Jaquetti R, Gonçalves JFDC. Chlorophyll a fluorescence of Bertholletia excelsa Bonpl. plantations under thinning, liming, and phosphorus fertilization. Photosynthetica. 2020;58:323–30. https://doi.org/10.32615/ps.2019.146.

    Article  CAS  Google Scholar 

  12. Slik JW, Paoli GD, McGuire KL, Amaral IL, Barroso J, Bastian ML, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr. 2013. https://doi.org/10.1111/geb.12092.

    Article  Google Scholar 

  13. Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, et al. Global importance of large-diameter trees. Global Ecol Biogeogr. 2018. https://doi.org/10.1111/geb.12747.

    Article  Google Scholar 

  14. Gratani L. Plant phenotypic plasticity in response to environmental factors. Adv Bot. 2014. https://doi.org/10.1155/2014/208747.

    Article  Google Scholar 

  15. Peres CA, Baider C, Zuidema PA, Wadt LHO, Kainer KA, Gomes-Silva DAP, et al. Demographic threats to the sustainability of Brazil nut exploitation. Science. 2003. https://doi.org/10.1126/science.1091698.

    Article  Google Scholar 

  16. Wadt LHO, Kainer KA, Gomes-Silva DAP. Population structure and nut yield of a Bertholletia excelsa stand in Southwestern Amazonia. For Ecol Manage. 2005. https://doi.org/10.1016/j.foreco.2005.02.061.

    Article  Google Scholar 

  17. Kainer KA, Wadt HO, Staudhammer CL. Testing a silvicultural recommendation: Brazil nut responses 10 years after liana cutting. J Appl Ecol. 2014. https://doi.org/10.1111/1365-2664.12231.

    Article  Google Scholar 

  18. Tonini H, Lopes CEV, Borges RA, Kaminski PE, de Alves MS, de Fagundes PRO. Fenologia, estrutura e produção de sementes em castanhais nativos de Roraima e características socioeconômicas dos extrativistas. Bol do Mus Para Emílio Goeldi. 2014;9:399–414.

    Google Scholar 

  19. Neves ES, Wadt LHO, Guedes MC. Population structure and management potential for Bertholletia excelsa Bonpl. in Acre and Amapá stands. Sci For. 2016. https://doi.org/10.18671/scifor.v44n109.02.

    Article  Google Scholar 

  20. Kainer KA, Wadt LHO, Gomes-Silva DAP, Capanu M. Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown attributes. J Trop Ecol. 2006. https://doi.org/10.1017/S0266467405002981.

    Article  Google Scholar 

  21. Cotta JN, Kainer KA, Wadt LHO, Staudhammer CL. Shifting cultivation effects on Brazil nut (Bertholletia excelsa) regeneration. For Ecol Manage. 2008. https://doi.org/10.1016/j.foreco.2008.03.026.

    Article  Google Scholar 

  22. Paiva PM, Guedes MC, Funi C. Brazil nut conservation through shifting cultivation. For Ecol Manage. 2010. https://doi.org/10.1016/j.foreco.2010.11.001.

    Article  Google Scholar 

  23. Guedes MC, Neves ES, Rodrigues EG, Paiva P, Costa JBP, Freitas MF, et al. “Castanha na roça”: increasing yields and renewing Brazil nut stands through shifting cultivation in Amapá State, Brazil. Bol Mus Para Emílio Goeldi Cienc Nat. 2014;9:381–98.

    Article  Google Scholar 

  24. Tonini H, Pedrozo CÂ. Variações anuais na produção de frutos e sementes de Castanheira-do-Brasil (Bertholletia excelsa Bonpl., Lecythidaceae) em florestas nativas de Roraima. Rev Árvore. 2014;38:133–44. https://doi.org/10.1590/S0100-67622014000100013.

    Article  Google Scholar 

  25. Rockwell CA, Guariguata MR, Menton M, Arroyo Quispe E, Quaedvlieg J, Warren-Thomas E, et al. Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0135464.

    Article  Google Scholar 

  26. Kainer KA, Wadt LHO, Staudhammer CL. Explaining variation in Brazil nut fruit production. For Ecol Manage. 2007. https://doi.org/10.1016/j.foreco.2007.05.024.

    Article  Google Scholar 

  27. Ferreira MJ, Gonçalves JFC, Ferraz JBS. Photosynthetic parameters of young Brazil nut (Bertholletia excelsa H. B.) plants subjected to fertilization in a degraded area in Central Amazonia. Photosynthetica. 2009. https://doi.org/10.1007/s11099-009-0088-2.

    Article  Google Scholar 

  28. Brienza Júnior S, Maneschy RQ, Mourão Júnior M, Gazel Filho AB, Yared JAG, Gonçalves D, et al. Sistemas Agroflorestais na Amazônia Brasileira: Análise de 25 Anos de Pesquisas. Pesqui Florest Bras. 2010. https://doi.org/10.4336/2009.pfb.60.67.

    Article  Google Scholar 

  29. Huang Y-Y, Mori SA, Kelly LM. A morphological cladistic analysis of Lecythidoideae with emphasis on Bertholletia, Corythophora, Eschweilera, and Lecythis. Brittonia. 2011. https://doi.org/10.1007/s12228-011-9202-4.

    Article  Google Scholar 

  30. Shepard GH, Ramirez H. “Made in Brazil”: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Econ Bot. 2011. https://doi.org/10.1007/s12231-011-9151-6.

    Article  Google Scholar 

  31. Thomas EI, Alcázar Caicedo CI, Loo JI, Kindt R III. The distribution of the Brazil nut (Bertholletia excelsa) through time: from range contraction in glacial refugia, over human-mediated expansion, to anthropogenic climate change. Bol Mus Para Emílio Goeldi Cienc Nat. 2014;9:267–91.

    Article  Google Scholar 

  32. Peres CA, Baider C. Seed dispersal, spatial distribution and population structure of Brazil nut trees (Bertholletia excelsa) in southeastern Amazonia. J Trop Ecol. 1997. https://doi.org/10.1017/S0266467400010749.

    Article  Google Scholar 

  33. Scoles R, Gribel R. Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Hum Ecol. 2011. https://doi.org/10.1007/s10745-011-9412-0.

    Article  Google Scholar 

  34. Thomas E, Alcázar Caicedo C, McMichael CH, Corvera R, Loo J. Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon basin. J Biogeogr. 2015. https://doi.org/10.1111/jbi.12540.

    Article  Google Scholar 

  35. Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science. 2017. https://doi.org/10.1126/science.aal0157.

    Article  Google Scholar 

  36. Tourne DCM, Ballester MVR, James PMA, Martorano LG, Guedes MC, Thomas E. Strategies to optimize modeling habitat suitability of Bertholletia excelsa in the Pan-Amazonia. Ecol Evol. 2019. https://doi.org/10.1002/ece3.5726.

    Article  Google Scholar 

  37. Sujii P, Martins K, Wadt L, Azevedo V, Solferini V. Genetic diversity of Bertholletia excelsa, an Amazonian species of wide distribution. BMC Proc. 2011. https://doi.org/10.1186/1753-6561-5-S7-P5.

    Article  Google Scholar 

  38. Mori SA, Prance GT. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). Adv Econ Bot. 1990;8:130–50.

    Google Scholar 

  39. Camargo FF, Costa RB, Resende MDV, Roa RAR, Rodrigues NB, Vivaldini dos Santos LV, et al. Variabilidade genética para caracteres morfométricos de matrizes de castanha-do-brasil da Amazônia Mato-grossense. Acta Amaz. 2010;40:705–10. https://doi.org/10.1590/S0044-59672010000400010.

    Article  Google Scholar 

  40. Sujii PS, Fernandes ETMB, Azevedo VCR, Ciampi AY, Martins K, Wadt LHO. Morphological and molecular characteristics do not confirm popular classification of the Brazil nut tree in Acre. Brazil Genet Mol Res. 2013. https://doi.org/10.4238/2013.September.27.3.

    Article  Google Scholar 

  41. Levis C, Flores BM, Moreira PA, Luize BG, Alves RP, Franco-Moraes J, Lins J, Konings E, Peña-Claros M, Bongers F, Costa FRC, Clement C. How people domesticated Amazonian forests. Front Ecol Evol. 2018. https://doi.org/10.3389/fevo.2017.00171.

    Article  Google Scholar 

  42. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010. https://doi.org/10.1016/j.tplants.2010.09.008.

    Article  Google Scholar 

  43. Thomas E, Valdivia J, Alcázar Caicedo C, Quaedvlieg J, Wadt LHO, Corvera R. NTFP harvesters as citizen scientists: validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon. PLoS One. 2017;12:e0183743.

    Article  Google Scholar 

  44. Nunes F, Soares-Filho B, Giudice R, Rodrigues H, Bowman M, Silvestrini R, et al. Economic benefits of forest conservation: assessing the potential rents from Brazil nut concessions in Madre de Dios, Peru, to channel REDD+ investments. Environ Conserv. 2012. https://doi.org/10.1017/S0376892911000671.

    Article  Google Scholar 

  45. Diniz TD de A, Basto TX. Contribuição ao conhecimento do clima típico da castanheira do Brasil. Embrapa. 1974; https://www.ainfo.cnptia.embrapa.br/digital/bitstream/item/149511/1/BT64-p59-71.pdf. Accessed 15 May 2021.

  46. de Guerreiro QLM, Oliveira Júnior RC, Rodrigues G, Santos D, Lourdes M, Ruivo P, et al. Spatial variability of soil physical and chemical aspects in a Brazil nut tree stand in the Brazilian Amazon. Afr J Agricult Res. 2017;12:237–50.

    Article  Google Scholar 

  47. Müller CH. A cultura da castanha-do-brasil. Embrapa-SPI. 1995. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/115003. Accessed 15 May 2021.

  48. Zuidema PA. Demography of exploited tree species in the Bolivian Amazon. PROMAB Scientific Series 2. 2000. https://www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1033.9108&rep=rep1&type=pdf. Accessed 15 May 2021.

  49. Bertwell TD, Kainer KA, Cropper WP, Staudhammer CL, Ucia L, Wadt LHO. Are Brazil nut populations threatened by fruit harvest? Biotropica. 2018. https://doi.org/10.1111/btp.12505.

    Article  Google Scholar 

  50. Camargo PB, Trumbore S, Martinelli LA. How old are large Brazil-nut trees (Bertholletia excelsa) in the Amazon? Sci Agric. 1994;51:389–91.

    Article  Google Scholar 

  51. Vieira S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, et al. Slow growth rates of Amazonian trees: consequences for carbon cycling. PNAS. 2005. https://doi.org/10.1073/pnas.0505966102.

    Article  Google Scholar 

  52. Greenwood MS, Ward MH, Day ME, Adams SL, Bond BJ. Age-related trends in red spruce foliar plasticity in relation to declining productivity. Tree Physiol. 2008. https://doi.org/10.1093/treephys/28.2.225.

    Article  Google Scholar 

  53. Soriano M, Zuidema PA, Barber C, Mohren F, Ascarrunz N, Licona JC, Peña-Claros M. Commercial logging of timber species enhances Amazon (Brazil) nut populations: insights from Bolivian managed forests. Forests. 2021. https://doi.org/10.3390/f12081059.

    Article  Google Scholar 

  54. Staudhammer CL, Wadt LHO, Kainer KA. Tradeoffs in basal area growth and reproduction shift over the lifetime of a long-lived tropical species. Oecologia. 2013. https://doi.org/10.1007/s00442-013-2603-1.

    Article  Google Scholar 

  55. Wadt LHO, Kainer KA, Staudhammer CL, Serrano ROP. Sustainable forest use in Brazilian extractive reserves: natural regeneration of Brazil nut in exploited populations. Biol Conserv. 2008. https://doi.org/10.1016/j.biocon.2007.10.007.

    Article  Google Scholar 

  56. Staudhammer CL, Wadt LHO, Kainer KA, da Cunha TA. Comparative models disentangle drivers of fruit production variability of an economically and ecologically important long-lived Amazonian tree. Sci Rep Nature. 2021. https://doi.org/10.1038/s41598-021-81948-4.

    Article  Google Scholar 

  57. Costa MG, Tonini H, Filho PM. Atributos do solo relacionados com a produção da castanheira-do-Brasil (Bertholletia excelsa). Floresta e Ambient. 2017. https://doi.org/10.1590/2179-8087.004215.

    Article  Google Scholar 

  58. Myers GP, Newton AC, Melgarejo O. The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Bolivia. For Ecol Manage. 2000. https://doi.org/10.1016/S0378-1127(99)00124-3.

    Article  Google Scholar 

  59. Peña-Claros M, Boot RGA, Dorado-Lora J, Zonta A. Enrichment planting of Bertholletia excelsa in secondary forest in the Bolivian Amazon: effect of cutting line width on survival, growth and crown traits. For Ecol Manage. 2002. https://doi.org/10.1016/S0378-1127(01)00491-1.

    Article  Google Scholar 

  60. Zuidema PA, Boot RGA. Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. J Trop Ecol. 2002. https://doi.org/10.1017/S0266467402002018.

    Article  Google Scholar 

  61. Scoles RI, Nicolau Klein GI, Gribel R III. Performance and survival of Brazil nut tree (Bertholletia excelsa Bonpl., Lecythidaceae), in different light conditions after six years to planting, in Trombetas River region, Oriximiná, Pará, Brazil. Bol do Mus Para Emílio Goeldi. 2014;9:321–36.

    Google Scholar 

  62. Homma AKO, de Menezes AJEA, Maués MM. Brazil nut tree: the challenges of extractivism for agricultural plantations. Bol do Mus Para Emílio Goeldi Ciências Nat. 2014;9:293–306.

    Article  Google Scholar 

  63. INMET. INMET – Instituto Nacional de Meteorologia. 2021; http://www.inmet.gov.br/portal. Accessed 20 Jan 2021.

  64. de Lopes JS, Costa KCP, Fernandes VS, Gonçalves JFC. Functional traits associated to photosynthetic plasticity of young Brazil nut (Bertholletia excelsa) plants. Flora. 2019. https://doi.org/10.1016/j.flora.2019.151446.

    Article  Google Scholar 

  65. Melo R. Castanha da Amazônia: Estudos de produção e mercado. Coord. das Organ. Indígenas da Amaz. Bras. - COIAB. 2000. https://www.documentacao.socioambiental.org/documentos/M6D00044.pdf. Accessed 20 Jan 2021.

  66. Guyot J, Guen VL. A review of a century of studies on South American leaf blight of the rubber tree. Plant Dis American Phytopathological Society. 2018. https://doi.org/10.1094/PDIS-04-17-0592-FE.

    Article  Google Scholar 

  67. Albuquerque F. Mancha parda das folhas da Castanheira do Pará causada por uma nova espécie de fungo. Technical Bulletin of the Northern Agronomic Institute. 1960. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/68842/1/IAN-BT38-3.pdf. Accessed 20 Feb 2021.

  68. Costa SARF, Richter M, de Toledo PM, Santos HMM. Castanheira-do-brasil recuperando áreas degradadas e provendo alimento e renda para comunidades da Amazônia Setentrional. Bol do Mus Para Emílio Goeldi Ciências Nat. 2009;4:65–78.

    Google Scholar 

  69. de Andrade JD, Cardoso JE. Caracterização de uma doença fúngica na castanheira-do-Brasil (Bertholletia excelsa H. B. K.). Acta Amaz. 1984. https://doi.org/10.1590/1809-43921984142008.

    Article  Google Scholar 

  70. Zhang R, Murat F, Pont C, Langin T, Salse J. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-187.

    Article  Google Scholar 

  71. Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G. Plant tolerance: a unique approach to control hemipteran pests. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.01363.

    Article  Google Scholar 

  72. Cavalcante MC, Oliveira FF, Maués MM, Freitas BM. Pollination requirements and the foraging behavior of potential pollinators of cultivated Brazil nut (Bertholletia excelsa Bonpl) trees in central Amazon Rainforest. J Entomol. 2012. https://doi.org/10.1155/2012/978019.

    Article  Google Scholar 

  73. Giustina LD, Baldoni AB, Tonini H, Azevedo VCR, Neves LG, Tardin FD, Sebbenn AM. Hierarchical outcrossing among and within fruits in Bertholletia excelsa Bonpl. (Lecythidaceae) open-pollinated seeds. Genet Molec Res. 2018. https://doi.org/10.4238/gmr16039872.

    Article  Google Scholar 

  74. O’malley RC, Buckley DP, Prance GT, Bawa KS. Genetics of Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae): 2. mating system. Theor Appl Genet. 1988. https://doi.org/10.1007/BF00273683.

    Article  Google Scholar 

  75. Wadt LHO, Baldoni AB, Silva VS, Campos T, Martins K, Azevedo VCR, Mata LR, Botin AA, Hoogerheide ESS, Tonini H, Sebbenn AM. Mating system variation among populations, individuals and with-in and among fruits in Bertholletia excelsa. Silvae Genetica. 2015. https://doi.org/10.1515/sg-2015-0023.

    Article  Google Scholar 

  76. Thomas E, Atkinson R, Kettle C. Fine-scale processes shape ecosystem service provision by an Amazonian hyperdominant tree species. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-29886-6.

    Article  Google Scholar 

  77. Müller CH. Castanha-do-Brasil. Estudos Agronômicos. 1981. https://www.ainfo.cnptia.embrapa.br/digital/bitstream/item/50147/1/documentos-1-cpatu.pdf. Accessed 12 Jan 2021.

  78. Garate-Quispe JS, Roca MRC, Aguirre GA. Survival and growth of Brazil-nut seedlings in tree-fall gaps and forest understory. Floresta Ambient. 2020. https://doi.org/10.1590/2179-8087.116817.

    Article  Google Scholar 

  79. Ferreira MJ, Gonçalves JFC, Ferraz JBS. Crescimento e eficiência do uso da água de plantas jovens de castanheira-da-amazônia em área degradada e submetidas à adubação. Ciência Florest. 2012. https://doi.org/10.5902/198050985747.

    Article  Google Scholar 

  80. Salomão RDP, de Santana AC, Júnior SB, de Rosa N, A, Precinoto RS,. Crescimento de Bertholletia excelsa Bonpl. (castanheira) na Amazônia trinta anos após a mineração de bauxita. Bol do Mus Para Emílio Goeldi Ciências Nat. 2014;9:307–20.

    Article  Google Scholar 

  81. Ferreira LMM, Tonini H. Comportamento da castanha-do-brasil (Bertholletia excelsa) e da cupiúba (Goupia glabra) em sistema agrosilvicultural na região da Confiança. Cantá-Roraima Acta Amaz. 2009. https://doi.org/10.1590/S0044-59672009000400012.

    Article  Google Scholar 

  82. Scoles R, Gribel R. The regeneration of Brazil nut trees in relation to nut harvest intensity in the Trombetas River valley of Northern Amazonia. Brazil For Ecol Manage. 2012. https://doi.org/10.1016/j.foreco.2011.10.027.

    Article  Google Scholar 

  83. Brienen RJW, Zuidema PA. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol. 2006. https://doi.org/10.1111/j.1365-2745.2005.01080.x.

    Article  Google Scholar 

  84. Stoian D. Cosechando lo que cae: la economía de la castaña (Bertholletia excelsa H.B.K.) en la Amazonía boliviana. In: Alexiades MN, Shanley P, editors. Prod For medios Subsist y Conserv Estud caso sobre Sist manejo Prod For no maderables. Centro para la Investigación Forestal Internacional. 2004. http://www.cifor.cgiar.org. Accessed 22 Apr 2021.

  85. Costa JR, Castro ABC, Wandelli EV, Coral SCT, Souza SAG. Aspectos silviculturais da castanha-do-brasil (Bertholletia excelsa) em sistemas agroflorestais na Amazônia Central. Acta Amaz. 2009. https://doi.org/10.1590/S0044-59672009000400013.

    Article  Google Scholar 

  86. Locatelli M, Martins EP, Marcante PH, Reis MC dos R. Produção de frutos em plantio de castanha-do-brasil no município de Machadinho d’Oeste, Rondônia. Embrapa. 2015. https://www.embrapa.br/en/busca-de-publicacoes/publicacao/1057503/producao-de-frutos-em-plantio-de-castanha-do-brasil. Accessed 22 Apr 2021.

  87. Morais RR, Francisco J, Gonçalves DC, Moreira U. Chloroplastid pigments contents and chlorophyll a fluorescence in amazonian tropical three species. Rev Árvore. 2007. https://doi.org/10.1590/S0100-67622007000500020.

    Article  Google Scholar 

  88. Souza CSC, Santos VAHF, Ferreira MJ, Gonçalves JFC. Biomassa, crescimento e respostas ecofisiológicas de plantas jovens de Bertholletia excelsa Bonpl. submetidas a diferentes níveis de irradiância. Ciência Florest. 2017. https://doi.org/10.5902/1980509827736.

    Article  Google Scholar 

  89. Costa KCP, Ferreira MJ, Linhares ACC, Guedes AV. Biomassa e nutrientes removidos no primeiro desbaste em plantio de Bertholletia excelsa Bonpl. Scientia Forestalis/Forest Sci. 2015;43:591–600.

    Google Scholar 

  90. Gonçalves JFC, Fernandes AV, Oliveira AFM, Rodrigues LF, Marenco RA. Primary metabolism components of seeds from Brazilian Amazon tree species. Braz J Plant Physiol. 2002. https://doi.org/10.1590/S1677-04202002000200009.

    Article  Google Scholar 

  91. Moreno FJ, Jenkins JA, Mellon FA, Rigby NM, Robertson JA, Wellner N, et al. Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochim Biophys Acta. 2004. https://doi.org/10.1016/j.bbapap.2003.11.007.

    Article  Google Scholar 

  92. Chunhieng T, Pétritis K, Elfakir C, Brochier J, Goli T, Montet D. Study of selenium distribution in the protein fractions of the Brazil nut, Bertholletia excelsa. J Agric Food Chem. 2004. https://doi.org/10.1021/jf049643e.

    Article  Google Scholar 

  93. Chunhieng T, Hafidi A, Pioch D, Brochier J, Montet D. Detailed study of Brazil nut (Bertholletia excelsa) oil micro-compounds: phospholipids, tocopherols and sterols. J Braz Chem Soc. 2008. https://doi.org/10.1590/S0103-50532008000700021.

    Article  Google Scholar 

  94. Lima BR, Silva FMA, Koolen HHF, Almeida RA, Souza ADL. Solid phase extraction of phospholipids from Brazil nut (Bertholletia excelsa) and their characterization by mass spectrometry analysis. Mass Spectrom Lett. 2014. https://doi.org/10.5478/MSL.2014.5.4.115.

    Article  Google Scholar 

  95. John JA, Shahidi F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct Foods. 2010. https://doi.org/10.1016/j.jff.2010.04.008.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Institute for Amazonian Research (MCTI-INPA), the Amazonas State Research Support Foundation (FAPEAM), the Coordination for the Improvement of Higher Education Personnel (CAPES – Brazil- Finance Code 001), and the National Council for Scientific and Technological Development (CNPq, Brazil) for their financial support for the research. Many thanks to Empresa Agropecuária Aruanã S.A. for its support and cooperation. J.F.C Gonçalves, F.A. Lobo, M. V. Ramos, Hector H. F. Koolen, and P. Mazzafera thank (CNPq-Brazil) for PQ research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Francisco de Carvalho Gonçalves.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Physiological Processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, K., de Carvalho Gonçalves, J., Gonçalves, A. et al. Advances in Brazil Nut Tree Ecophysiology: Linking Abiotic Factors to Tree Growth and Fruit Production. Curr Forestry Rep 8, 90–110 (2022). https://doi.org/10.1007/s40725-022-00158-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-022-00158-x

Keywords

Navigation