Skip to main content

Advertisement

Log in

Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benjamin, E. J., et al. (2019). Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation, 139(10), 56–528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  Google Scholar 

  2. Virani, S. S., et al. (2020). Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, 141(9), 139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  Google Scholar 

  3. Ferraz, M., et al. (2012). Correlation of lifetime progress of atherosclerosis and morphologic markers of severity in humans: new tools for a more sensitive evaluation. Clinics, 67(9), 1071–1075. https://doi.org/10.6061/clinics/2012(09)15.

    Article  PubMed  Google Scholar 

  4. Melly, L., Torregrossa, G., Lee, T., Jansens, J.-L., & Puskas, J. D. (2018). Fifty years of coronary artery bypass grafting. Journal of Thoracic Disease, 10(3), 1960–1967. https://doi.org/10.21037/jtd.2018.02.43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McKavanagh, P., Yanagawa, B., Zawadowski, G., & Cheema, A. (2017). Management and prevention of saphenous vein graft failure: a review. Cardiol. Ther., 6(2), 203–223. https://doi.org/10.1007/s40119-017-0094-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao, Y., Vanhoutte, P. M., & Leung, S. W. S. (2015). Vascular nitric oxide: beyond eNOS. Journal of Pharmacological Sciences, 129(2), 83–94. https://doi.org/10.1016/j.jphs.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  7. Galley, H. F., & Webster, N. R. (2004). Physiology of the endothelium. British Journal of Anaesthesia, 93(1), 105–113. https://doi.org/10.1093/bja/aeh163.

    Article  CAS  PubMed  Google Scholar 

  8. Marchio, P., Guerra-Ojeda, S., Vila, J. M., Aldasoro, M., Victor, V. M., & Mauricio, M. D. (2019). Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxidative Medicine and Cellular Longevity, 2019, 1–32. https://doi.org/10.1155/2019/8563845.

    Article  CAS  Google Scholar 

  9. Langheinrich, A. C., et al. (2006). Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E−/−/low-density lipoprotein−/− double knockout mice. Atherosclerosis, Thrombosis, and Vascular Biology, 26(2), 347–352. https://doi.org/10.1161/01.ATV.0000196565.38679.6d.

  10. Maiellaro, K., & Taylor, W. (2007). The role of the adventitia in vascular inflammation. Cardiovascular Research, 75(4), 640–648. https://doi.org/10.1016/j.cardiores.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  11. Scott, N. A., et al. (1996). Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation, 93(12), 2178–2187. https://doi.org/10.1161/01.CIR.93.12.2178.

    Article  CAS  PubMed  Google Scholar 

  12. Prado, C. M., Ramos, S. G., Elias, J., & Rossi, M. A. (2008). Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats: turbulent blood flow and hypercholesterolaemia. International Journal of Experimental Pathology, 89(1), 72–80. https://doi.org/10.1111/j.1365-2613.2007.00564.x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shyy, Y. J., Hsieh, H. J., Usami, S., & Chien, S. (1994). Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proceedings of the National Academy of Sciences, 91(11), 4678–4682. https://doi.org/10.1073/pnas.91.11.4678.

    Article  CAS  Google Scholar 

  14. Schwenke, D. C., & Carew, T. E. (1989). Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arterioscler Off J Am Heart Assoc Inc, 9(6), 895–907. https://doi.org/10.1161/01.ATV.9.6.895.

    Article  CAS  Google Scholar 

  15. Sorescu, G. P., et al. (2003). Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. The Journal of Biological Chemistry, 278(33), 31128–31135. https://doi.org/10.1074/jbc.M300703200.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y., et al. (2002). Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(1), 76–81. https://doi.org/10.1161/hq0102.101822.

    Article  PubMed  Google Scholar 

  17. Emini Veseli, B., et al. (2017). Animal models of atherosclerosis. European Journal of Pharmacology, 816, 3–13. https://doi.org/10.1016/j.ejphar.2017.05.010.

    Article  CAS  PubMed  Google Scholar 

  18. Miteva, K., Madonna, R., de Caterina, R., & Van Linthout, S. (2018). Innate and adaptive immunity in atherosclerosis. Vascular Pharmacology, 107, 67–77.

    Article  CAS  Google Scholar 

  19. Libby, P., & Hansson, G. K. (2015). Inflammation and immunity in diseases of the arterial tree: players and layers. Circulation Research, 116(2), 307–311. https://doi.org/10.1161/CIRCRESAHA.116.301313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Libby, P. (2013). History of discovery: inflammation in atherosclerosis (p. 15).

    Google Scholar 

  21. Wang, Y., et al. (2019). Smooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(5), 876–887. https://doi.org/10.1161/ATVBAHA.119.312434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chistiakov, D. A., Melnichenko, A. A., Myasoedova, V. A., Grechko, A. V., & Orekhov, A. N. (2017). Mechanisms of foam cell formation in atherosclerosis. J Moecular Med, 95(11), 1153–1165.

    CAS  Google Scholar 

  23. Taleb, S. (2016). Inflammation in atherosclerosis. Archives of Cardiovascular Diseases, 109(12), 708–715. https://doi.org/10.1016/j.acvd.2016.04.002.

    Article  PubMed  Google Scholar 

  24. Ketelhuth, D. F. J., & Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circulation Research, 118(4), 668–678. https://doi.org/10.1161/CIRCRESAHA.115.306427.

    Article  CAS  PubMed  Google Scholar 

  25. Tabas, I., & Lichtman, A. H. (2017). Monocyte-macrophages and T cells in atherosclerosis. Immunity, 47(4), 621–634. https://doi.org/10.1016/j.immuni.2017.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, J., & Shi, G.-P. (2014). Vascular wall extracellular matrix proteins and vascular diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(11), 2106–2119. https://doi.org/10.1016/j.bbadis.2014.07.008.

    Article  CAS  Google Scholar 

  27. Ponticos, M., & Smith, B. D. (2014). Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. Journal of Biomedical Research, 28(1), 25–39. https://doi.org/10.7555/JBR.27.20130064.

    Article  CAS  PubMed  Google Scholar 

  28. Eble, J. A., & Niland, S. (2009). The extracellular matrix of blood vessels. Curr Pharaceutical Des., 15(12), 1385–1400.

    Article  CAS  Google Scholar 

  29. Katsuda, S., & Kaji, T. (2003). Atherosclerosis and extracellular matrix. Journal of Atherosclerosis and Thrombosis, 10(5), 267–274. https://doi.org/10.5551/jat.10.267.

    Article  CAS  PubMed  Google Scholar 

  30. Rhodes, J. M., & Simons, M. (2007). The extracellular matrix and blood vessel formation: not just a scaffold. Journal of Cellular and Molecular Medicine, 11(2), 176–205. https://doi.org/10.1111/j.1582-4934.2007.00031.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews. Molecular Cell Biology, 15(12), 802–812. https://doi.org/10.1038/nrm3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nissen, R., Cardinale, G. J., & Udenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Sciences, 75(1), 451–453. https://doi.org/10.1073/pnas.75.1.451.

    Article  CAS  Google Scholar 

  33. Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M., & Brown, R. A. (2000). Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair and Regeneration, 8(3), 226–237.

    Article  CAS  PubMed  Google Scholar 

  34. Heeneman, S., et al. (2003). The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis: the dynamic extracellular matrix. The Journal of Pathology, 200(4), 516–525. https://doi.org/10.1002/path.1395.

    Article  CAS  PubMed  Google Scholar 

  35. Simionescu, D., et al. (2006). Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials, 27(5), 702–713.

    Article  CAS  PubMed  Google Scholar 

  36. Halka, A. T., et al. (2008). The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovascular Pathology, 17(2), 98–102.

    Article  CAS  PubMed  Google Scholar 

  37. Smith, E. B. (1965). The influence of age and atherosclerosis on the chemistry of aortic intima: part 2. Collagen and mucopolysaccharides. Journal of Atherosclerosis Research, 5(2), 241–248.

    Article  CAS  PubMed  Google Scholar 

  38. Adiguzel, E., Ahmad, P. J., Franco, C., & Bendeck, M. P. (2009). Collagens in the progression and complications of atherosclerosis. Vascular Medicine, 14(1), 73–89. https://doi.org/10.1177/1358863X08094801.

    Article  PubMed  Google Scholar 

  39. Liu, B., Itoh, H., Louie, O., Kubota, K., & Kent, K. C. (2004). The role of phospholipase C and phosphatidylinositol 3-kinase in vascular smooth muscle cell migration and proliferation. The Journal of Surgical Research, 120(2), 256–265.

    Article  CAS  PubMed  Google Scholar 

  40. Hou, G., Mulholland, D., Gronska, M. A., & Bendeck, M. P. (2000). Type VIII collagen stimulates smooth muscle cell migration and matrix metalloproteinase synthesis after arterial injury. The American Journal of Pathology, 156(2), 467–476. https://doi.org/10.1016/S0002-9440(10)64751-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steffensen, L. B., & Rasmussen, L. M. (2018). A role for collagen type IV in cardiovascular disease? American Journal of Physiology. Heart and Circulatory Physiology, 315(3), H610–H625. https://doi.org/10.1152/ajpheart.00070.2018.

    Article  CAS  PubMed  Google Scholar 

  42. Jones, P. L., Jones F. S., Zhou B., & Rabinovitch M. (1999). Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a β3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. Journal of Cell Science, 112(4), 435–445.

  43. Chistiakov, D. A., Sobenin, I. A., & Orekhov, A. N. (2013). Vascular extracellular matrix in atherosclerosis. Cardiology in Review, 21(6), 270–288. https://doi.org/10.1097/CRD.0b013e31828c5ced.

    Article  PubMed  Google Scholar 

  44. Rekhter, M. D., et al. (2000). Hypercholesterolemia causes mechanical weakening of rabbit atheroma: local collagen loss as a prerequisite of plaque rupture. Circulation Research, 86(1), 101–108. https://doi.org/10.1161/01.RES.86.1.101.

    Article  CAS  PubMed  Google Scholar 

  45. Faia, K. L., Davis, W. P., Marone, A. J., & Foxall, T. L. (2002). Matrix metalloproteinases and tissue inhibitors of metalloproteinases in hamster aortic atherosclerosis: correlation with in-situ zymography. Atheroscler. J., 160(2), 325–337.

    Article  CAS  Google Scholar 

  46. Gayral, S., et al. (2014). Elastin-derived peptides potentiate atherosclerosis through the immune Neu1–PI3Kγ pathway. Cardiovascular Research, 102(1), 118–127. https://doi.org/10.1093/cvr/cvt336.

    Article  CAS  PubMed  Google Scholar 

  47. Bültmann, A., Li, Z., Wagner, S., Gawaz, M., Ungerer, M., & Münch, G. (2010). Impact of glycoprotein VI and platelet adhesion on atherosclerosis—a possible role of fibronectin. Journal of Molecular and Cellular Cardiology, 49(3), 532–542.

    Article  PubMed  Google Scholar 

  48. Viola, M., et al. (2016). Extracellular matrix in atherosclerosis: hyaluronan and proteoglycans insights. Current Medicinal Chemistry, 23(26), 2958–2971.

    Article  CAS  PubMed  Google Scholar 

  49. Ilhan, F. (2015). Atherosclerosis and the role of immune cells. World Journal of Clinical Cases, 3(4), 345. https://doi.org/10.12998/wjcc.v3.i4.345.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arroyo, A. G., & Iruela-Arispe, M. L. (2010). Extracellular matrix, inflammation, and the angiogenic response. Cardiovascular Research, 86(2), 226–235. https://doi.org/10.1093/cvr/cvq049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stringa, E., Knäuper, V., Murphy, G., & Gavrilovic, J. (2000). Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells. Journal of Cell Science, 113, 2055–2064.

    Article  CAS  PubMed  Google Scholar 

  52. Barillari, G., Albonici, L., Incerpi, S., Volpi, A., Ensoli, B., & Manzari, V. (2001). Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing α5β1 integrin expression and function. Atherosclerosis, 154(2), 377–385.

    Article  CAS  PubMed  Google Scholar 

  53. Galis, Z. S., Muszynski, M., Sukhova, G. K., Simon-Morrissey, E., & Libby, P. (1994). Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Annals of the New York Academy of Sciences, 748(1), 501–507.

    Article  Google Scholar 

  54. Ghesquiere, S. A. I., et al. (2005). Macrophage-specific overexpression of group IIa sPLA 2 increases atherosclerosis and enhances collagen deposition. Journal of Lipid Research, 46(2), 201–210. https://doi.org/10.1194/jlr.M400253-JLR200.

    Article  CAS  PubMed  Google Scholar 

  55. Abdulhussein, R., McFadden, C., Fuentes-Prior, P., & Vogel, W. F. (2004). Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor. The Journal of Biological Chemistry, 279(30), 31462–31470. https://doi.org/10.1074/jbc.M400651200.

    Article  CAS  PubMed  Google Scholar 

  56. Dunér, P., et al. (2011). Immunization of apoE–/– mice with aldehyde-modified fibronectin inhibits the development of atherosclerosis. Cardiovascular Research, 91(3), 528–536. https://doi.org/10.1093/cvr/cvr101.

    Article  CAS  PubMed  Google Scholar 

  57. Caligiuri, G., et al. (2006). Reduced immunoregulatory CD31 + T cells in patients with atherosclerotic abdominal aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(3), 618–623. https://doi.org/10.1161/01.ATV.0000200380.73876.d9.

    Article  CAS  PubMed  Google Scholar 

  58. Shankavaram, U. T., et al. (2001). Monocyte membrane type 1-matrix metalloproteinase: prostaglandin-dependent regulation and role in metalloproteinase-2 activation. The Journal of Biological Chemistry, 276(22), 19027–19032. https://doi.org/10.1074/jbc.M009562200.

    Article  CAS  PubMed  Google Scholar 

  59. Sibinga, N. E. S., et al. (1997). Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circulation Research, 80(4), 532–541.

    Article  CAS  PubMed  Google Scholar 

  60. Xu, H., Jiang, J., Chen, W., Li, W., & Chen, Z. (2019). Vascular macrophages in atherosclerosis. Journal of Immunology Research, 2019, 1–14. https://doi.org/10.1155/2019/4354786.

    Article  CAS  Google Scholar 

  61. Marom, B., Rahat, M. A., Lahat, N., Weiss-Cerem, L., Kinarty, A., & Bitterman, H. (2007). Native and fragmented fibronectin oppositely modulate monocyte secretion of MMP-9. Journal of Leukocyte Biology, 81(6), 1466–1476. https://doi.org/10.1189/jlb.0506328.

    Article  CAS  PubMed  Google Scholar 

  62. Ricard-Blum, S., & Salza, R. (2014). Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Experimental Dermatology, 23(7), 457–463. https://doi.org/10.1111/exd.12435.

    Article  CAS  PubMed  Google Scholar 

  63. Payne, G. A., et al. (2017). The matrikine proline-glycine-proline is locally generated following acute arterial vascular injury. Circulation, 136(1), 21106.

    Google Scholar 

  64. Liu, N. et al. (2001). Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Research, 61(3), 1022–1028.

    CAS  PubMed  Google Scholar 

  65. Wells, J. M., Gaggar, A., & Blalock, J. E. (2015). MMP generated matrikines. Matrix Biology, 44–46, 122–129. https://doi.org/10.1016/j.matbio.2015.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Assadian, S., et al. (2012). p53 inhibits angiogenesis by inducing the production of Arresten. Cancer Research, 72(5), 1270–1279. https://doi.org/10.1158/0008-5472.CAN-11-2348.

    Article  CAS  PubMed  Google Scholar 

  67. Okada, M., & Yamawaki, H. (2019). A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. Journal of Pharmacological Sciences, 139(2), 59–64. https://doi.org/10.1016/j.jphs.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  68. Walia, A., Yang, J. F., Huang, Y., Rosenblatt, M. I., Chang, J.-H., & Azar, D. T. (2015). Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(12), 2422–2438. https://doi.org/10.1016/j.bbagen.2015.09.007.

    Article  CAS  Google Scholar 

  69. Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A., & Ribatti, D. (2014). Extracellular matrix modulates angiogenesis in physiological and pathological conditions. BioMed Research International, 2014, 1–10. https://doi.org/10.1155/2014/756078.

    Article  Google Scholar 

  70. Zhao, Y., Gu, X., Zhang, N., Kolonin, M. G., An, Z., & Sun, K. (2016). Divergent functions of endotrophin on different cell populations in adipose tissue. American Journal of Physiology. Endocrinology and Metabolism, 311(6), E952–E963. https://doi.org/10.1152/ajpendo.00314.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Väisänen, M.-R., Väisänen, T., Tu, H., Pirilä, P., Sormunen, R., & Pihlajaniemi, T. (2006). The shed ectodomain of type XIII collagen associates with the fibrillar fibronectin matrix and may interfere with its assembly in vitro. Biochemical Journal, 393(1), 43–50. https://doi.org/10.1042/BJ20051073.

    Article  CAS  Google Scholar 

  72. Jones, V. A., Patel, P. M., Gibson, F. T., Cordova, A., & Amber, K. T. (2020). The role of collagen XVII in cancer: squamous cell carcinoma and beyond. Frontiers in Oncology, 10, 352. https://doi.org/10.3389/fonc.2020.00352.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mao, W., et al. (2010). Evaluation of recombinant endostatin in the treatment of atherosclerotic plaques and neovascularization in rabbits. Journal of Zhejiang University. Science. B, 11(8), 599–607. https://doi.org/10.1631/jzus.B1001011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kojima, T., Azar, D. T., & Chang, J.-H. (2008). Neostatin-7 regulates bFGF-induced corneal lymphangiogenesis. FEBS Letters, 582(17), 2515–2520. https://doi.org/10.1016/j.febslet.2008.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stine, J. M., Sun, Y., Armstrong, G., Bowler, B. E., & Briknarová, K. (2015). Structure and unfolding of the third type III domain from human fibronectin. Biochemistry, 54(44), 6724–6733. https://doi.org/10.1021/acs.biochem.5b00818.

    Article  CAS  PubMed  Google Scholar 

  76. Douglass, S., Goyal, A., & Iozzo, R. V. (2015). The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connective Tissue Research, 56(5), 381–391. https://doi.org/10.3109/03008207.2015.1045297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wanga, S., et al. (2017). Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome: microcalcification and elastin fragmentation in Marfan syndrome. The Journal of Pathology, 243(3), 294–306. https://doi.org/10.1002/path.4949.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, D., Wang, Z., Zhang, L., & Wang, Y. (2017). Roles of cells from the arterial vessel wall in atherosclerosis. Mediators of Inflammation, 2017, 1–9. https://doi.org/10.1155/2017/8135934.

    Article  CAS  Google Scholar 

  79. Gimbrone, M. A., & García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research, 118(4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stöllberger, C., & Finsterer, J. (2002). Role of infectious and immune factors in coronary and cerebrovascular arteriosclerosis. Clinical and Vaccine Immunology, 9(2), 207–215. https://doi.org/10.1128/CDLI.9.2.207-215.2002.

    Article  Google Scholar 

  81. Halper, J. (2018). Basic components of vascular connective tissue and extracellular matrix. In Advances in Pharmacology (Vol. 81, pp. 95–127). Amsterdam: Elsevier.

    Google Scholar 

  82. Pavlovic, S., et al. (Feb. 2006). Targeting prostaglandin E 2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. The Journal of Biological Chemistry, 281(6), 3321–3328. https://doi.org/10.1074/jbc.M506846200.

    Article  CAS  PubMed  Google Scholar 

  83. Milutinović, A., Šuput, D., & Zorc-Pleskovič, R. (2019). Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review. Bosnian Journal of Basic Medical Sciences, 20(1), 21–30. https://doi.org/10.17305/bjbms.2019.4320.

  84. Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nature Reviews. Cardiology, 16, 727–744.

    Article  PubMed  Google Scholar 

  85. Chen, Z., Fu, Y., & Kong, W. (2015). Extracellular matrix on the phenotypic switching of vascular smooth muscle cells. Current Angiogenesis, 4(1), 46–59. https://doi.org/10.2174/221155280401160517170529.

    Article  CAS  Google Scholar 

  86. Kingsley, K., et al. (2002). ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochemical and Biophysical Research Communications, 293(3), 1000–10006.

    Article  CAS  PubMed  Google Scholar 

  87. Rensen, S. S. M., Doevendans, P. A. F. M., & van Eys, G. J. J. M. (2007). Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands Heart Journal, 15(3), 100–108. https://doi.org/10.1007/BF03085963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pickering, J. G., et al. (2000). α5β1 integrin expression and luminal edge fibronectin matrix assembly by smooth muscle cells after arterial injury. The American Journal of Pathology, 156(2), 453–465. https://doi.org/10.1016/S0002-9440(10)64750-5.

  89. Cheng, J., et al. (2007). Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin Vbeta3 and stabilization of PINCH-1. The Journal of Biological Chemistry, 282(47), 34268–34275. https://doi.org/10.1074/jbc.M703115200.

    Article  CAS  PubMed  Google Scholar 

  90. Doran, A. C., Meller, N., & McNamara, C. A. (2008). Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(5), 812–819. https://doi.org/10.1161/ATVBAHA.107.159327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Allahverdian, S., Chaabane, C., Boukais, K., Francis, G. A., & Bochaton-Piallat, M.-L. (2018). Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovascular Research, 114(4), 540–550. https://doi.org/10.1093/cvr/cvy022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Brien, K. D., et al. (1993). Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. The Journal of Clinical Investigation, 92(2), 945–951. https://doi.org/10.1172/JCI116670.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118(4), 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roy, J., et al. (2002). Fibronectin promotes cell cycle entry in smooth muscle cells in primary culture. Experimental Cell Research, 273(2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  95. Williams, E. S., Wilson, E., & Ramos, K. S. (2012). NF-B and matrix-dependent regulation of osteopontin promoter activity in allylamine-activated vascular smooth muscle cells. Oxidative Medicine and Cellular Longevity, 2012, 1–10. https://doi.org/10.1155/2012/496540.

    Article  CAS  Google Scholar 

  96. Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114(12), 1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721.

    Article  CAS  PubMed  Google Scholar 

  97. Singh, & Torzewski. (2019). Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis. Biomolecules, 9(9), 472. https://doi.org/10.3390/biom9090472.

    Article  CAS  PubMed Central  Google Scholar 

  98. Holm Nielsen, S., et al. (2018). A biomarker of collagen type I degradation is associated with cardiovascular events and mortality in patients with atherosclerosis. Jounral Intern. Med., 285(1), 118–123.

    Article  Google Scholar 

  99. Holm Nielsen, S., et al. (2018). Markers of basement membrane remodeling are associated with higher mortality in patients with known atherosclerosis. Journal of the American Heart Association, 7(21), e009193. https://doi.org/10.1161/JAHA.118.009193.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bertelsen, D. M., et al. (2018). Matrix metalloproteinase mediated type I collagen degradation is an independent predictor of increased risk of acute myocardial infarction in postmenopausal women. Scientific Reports, 8(1), 5371. https://doi.org/10.1038/s41598-018-23458-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Otaki, Y., et al. (2016). Serum carboxy-terminal telopeptide of type I collagen (I-CTP) is predictive of clinical outcome in peripheral artery disease patients following endovascular therapy. Heart and Vessels, 32, 14–156.

    Google Scholar 

  102. Holm Nielsen, S., et al. (2020). Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. Journal of Internal Medicine, 287(5), 493–513. https://doi.org/10.1111/joim.13034.

    Article  CAS  PubMed  Google Scholar 

  103. Garvin, P., Jonasson, L., Nilsson, L., Falk, M., & Kristenson, M. (2015). Plasma matrix metalloproteinase-9 levels predict first-time coronary heart disease: an 8-year follow-up of a community-based middle aged population. PLoS ONE, 10(9), e0138290. https://doi.org/10.1371/journal.pone.0138290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kai, H., et al. (1998). Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. Journal of the American College of Cardiology, 32(2), 368–372. https://doi.org/10.1016/S0735-1097(98)00250-2.

    Article  CAS  PubMed  Google Scholar 

  105. Webb, K. E., Henney, A. M., Anglin, S., Humphries, S. E., & McEwan, J. R. (1997). Expression of matrix metalloproteinases and their inhibitor TIMP-1 in the rat carotid artery after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 17(9), 1837–1844. https://doi.org/10.1161/01.ATV.17.9.1837.

    Article  CAS  PubMed  Google Scholar 

  106. Roycik, M., Myers, J., Newcomer, R., & Sang, Q. (2013). Matrix metalloproteinase inhibition in atherosclerosis and stroke. Current Molecular Medicine, 13(8), 1299–1313.

    Article  CAS  PubMed  Google Scholar 

  107. Prescott, M. F., et al. (2006). Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Annals of the New York Academy of Sciences, 878(1), 179–190.

    Google Scholar 

  108. Ruddy, J. M., Ikonomidis, J. S., & Jones, J. A. (2016). Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: multiple mechanisms of inhibition to promote stability. Journal of Vascular Research, 53(1–2), 1–16. https://doi.org/10.1159/000446703.

    Article  CAS  PubMed  Google Scholar 

  109. Luan, Z., Chase, A. J., & Newby, A. C. (2003). Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(5), 769–775. https://doi.org/10.1161/01.ATV.0000068646.76823.AE.

    Article  CAS  PubMed  Google Scholar 

  110. Brown, D. L., Desai, K. K., Vakili, B. A., Nouneh, C., Lee, H.-M., & Golub, L. M. (2004). Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(4), 733–738. https://doi.org/10.1161/01.ATV.0000121571.78696.dc.

    Article  CAS  PubMed  Google Scholar 

  111. Axisa, B., et al. (2002). Prospective, randomized, double-blind trial investigating the effect of doxycycline on matrix metalloproteinase expression within atherosclerotic carotid plaques. Stroke, 33(12), 2858–2864. https://doi.org/10.1161/01.STR.0000038098.04291.F6.

    Article  CAS  PubMed  Google Scholar 

  112. Aikawa, M., et al. (1998). Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation, 97(24), 2433–2444. https://doi.org/10.1161/01.CIR.97.24.2433.

    Article  CAS  PubMed  Google Scholar 

  113. Crisby, M., Nordin-Fredriksson, G., Shah, P. K., Yano, J., Zhu, J., & Nilsson, J. (2001). Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation, 103(7), 926–933. https://doi.org/10.1161/01.CIR.103.7.926.

    Article  CAS  PubMed  Google Scholar 

  114. Lutgens, E., et al. (2002). Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(6), 975–982. https://doi.org/10.1161/01.ATV.0000019729.39500.2F.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, N., et al. (2010). Role of TGF-β1 in bone matrix production in vascular smooth muscle cells induced by a high-phosphate environment. Nephron. Experimental Nephrology, 115, 60–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finosh G. Thankam.

Ethics declarations

Conflict of Interest

Author DKA has received grants from the National Institutes of Health. The other authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants and/or animals performed by any of the authors.

No writing assistance was utilized in the production of this manuscript.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohindra, R., Agrawal, D.K. & Thankam, F.G. Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J. of Cardiovasc. Trans. Res. 14, 647–660 (2021). https://doi.org/10.1007/s12265-020-10091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10091-8

Keywords

Navigation