Skip to main content

Advertisement

Log in

Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Disorders of behavioral regulation, including attention deficit hyperactivity disorder (ADHD) and drug addiction, are in part due to poor inhibitory control, attentional deficits, and hyper-responsivity to reward-associated cues.

Objectives

To determine whether these traits are related, we tested genetically variable male and female heterogeneous stock rats in the choice reaction time (CRT) task and Pavlovian conditioned approach (PavCA). Sex differences in the response to methylphenidate during the CRT were also assessed.

Methods

In the CRT task, rats were required to withhold responding until one of two lights indicated whether responses into a left or right port would be reinforced with water. Reaction time on correct trials and premature responses were the operational definitions of attention and response inhibition, respectively. Rats were also pretreated with oral methylphenidate (0, 2, 4 mg/kg) during the CRT task to determine whether this drug would improve performance. Subsequently, during PavCA, presentation of an illuminated lever predicted the delivery of a food pellet into a food-cup. Lever-directed approach (sign-tracking) and food-cup approach (goal-tracking) were the primary measures, and rats were categorized as “sign-trackers” and “goal-trackers” using an index based on these measures.

Results

Sign-trackers made more premature responses than goal-trackers but showed no differences in reaction time. There were sex differences in both tasks, with females having higher sign-tracking, completing more CRT trials, and making more premature responses after methylphenidate administration.

Conclusions

These results indicate that response inhibition is related to reward-cue responsivity, suggesting that these traits are influenced by common genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abikoff HB, Jensen PS, Arnold LL, Hoza B, Hechtman L, Pollack S, Martin D, Alvir J, March JS, Hinshaw S, Vitiello B, Newcorn J, Greiner A, Cantwell DP, Conners CK, Elliott G, Greenhill LL, Kraemer H, Pelham WE Jr, Severe JB, Swanson JM, Wells K, Wigal T (2002) Observed classroom behavior of children with ADHD: relationship to gender and comorbidity. J Abnorm Child Psychol 30:349–59

    Article  PubMed  Google Scholar 

  • Arnett AB, Pennington BF, Willcutt EG, DeFries JC, Olson RK (2015) Sex differences in ADHD symptom severity. J Child Psychol Psychiatry 56:632–639

    Article  PubMed  Google Scholar 

  • Ashare RL, Wileyto EP, Perkins KA, Schnoll RA (2013) The First 7 Days of a Quit Attempt Predicts Relapse: Validation of a Measure for Screening Medications for Nicotine Dependence. J Addict Med 7:249–254

  • Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79

  • Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–87

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley J, Snyder F, Brown SD, Brown RW, Pond BB (2015) Sex differences in the kinetic profiles of d- and l- methylphenidate in the brains of adult rats. Eur Rev Med Pharmacol Sci 19:2514–9

    CAS  PubMed  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60:1111–20

    Article  CAS  PubMed  Google Scholar 

  • Bindra D (1978) How adaptive behavior is produced: a perceptual-motivation alternative to response reinforcement. Behav Brain Res 1:41–91

    Google Scholar 

  • Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15:195–206

    CAS  PubMed  Google Scholar 

  • Boakes R (1977) Performance on learning to associate a stimulus with positive reinforcement. In: Davis H, Hurwitz H (eds) Operant-Pavlovian interactions. Lawrence Erlbaum Associates, Hillsdale, pp 67–97

    Google Scholar 

  • Bower GH (1961) A contrast effect in differential conditioning. J Exp Psychol 62:196

    Article  Google Scholar 

  • Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, Weierink L, Ham J, de Geus EJ, Schoffelmeer AN, van den Brink W, Veltman DJ, de Vries TJ, Pattij T, Goudriaan AE (2012) The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One 7, e36781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubnik MG, Hawk LW Jr, Pelham WE Jr, Waxmonsky JG, Rosch KS (2015) Reinforcement enhances vigilance among children with ADHD: comparisons to typically developing children and to the effects of methylphenidate. J Abnorm Child Psychol 43:149–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton CL, Fletcher PJ (2012) Age and sex differences in impulsive action in rats: the role of dopamine and glutamate. Behav Brain Res 230:21–33

    Article  CAS  PubMed  Google Scholar 

  • Caprioli D, Jupp B, Hong YT, Sawiak SJ, Ferrari V, Wharton L, Williamson DJ, McNabb C, Berry D, Aigbirhio FI, Robbins TW, Fryer TD, Dalley JW (2015) Dissociable rate-dependent effects of oral methylphenidate on impulsivity and D2/3 receptor availability in the striatum. J Neurosci 35:3747–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos FX, Elia J, Kruesi MJ, Marsh WL, Gulotta CS, Potter WZ, Ritchie GF, Hamburger SD, Rapoport JL (1996) Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacology 14:125–37

    Article  CAS  PubMed  Google Scholar 

  • Charach A, Yeung E, Climans T, Lillie E (2011) Childhood attention-deficit/hyperactivity disorder and future substance use disorders: comparative meta-analyses. J Am Acad Child Adolesc Psychiatry 50:9–21

    Article  PubMed  Google Scholar 

  • Chelaru MI, Yang PB, Dafny N (2012) Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res 226:8–17

    Article  CAS  PubMed  Google Scholar 

  • Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, Jens W, Suh J, Listerud J, Marquez K, Franklin T, Langleben D, Detre J, O’Brien CP (2008) Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3, e1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacol (Berl) 91:458–66

    Article  CAS  Google Scholar 

  • de Wit H (2009) Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 14:22–31

    Article  PubMed  Google Scholar 

  • DeVito EE, Blackwell AD, Clark L, Kent L, Dezsery AM, Turner DC, Aitken MR, Sahakian BJ (2009) Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacol (Berl) 202:531–9

    Article  CAS  Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–8

    Article  CAS  PubMed  Google Scholar 

  • Doremus-Fitzwater TL, Spear LP (2011) Amphetamine-induced incentive sensitization of sign-tracking behavior in adolescent and adult female rats. Behav Neurosci 125:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 65:851–6

    Article  CAS  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacol (Berl) 146:348–61

    Article  CAS  Google Scholar 

  • Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66:265–73

    Article  PubMed  Google Scholar 

  • Flagel SB, Robinson TE, Clark JJ, Clinton SM, Watson SJ, Seeman P, Phillips PE, Akil H (2010) An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology 35:388–400

    Article  PubMed  Google Scholar 

  • Flaherty CF (1982) Incentive contrast: a review of behavioral changes following shifts in reward. Anim Learn Behav 10:409–440

    Article  Google Scholar 

  • Flaherty CF, Largen J (1975) Within-subjects positive and negative contrast effects in rats. J Comp Physiol Psychol 88:653–664

    Article  CAS  PubMed  Google Scholar 

  • Fosco WD, Hawk LW Jr, Rosch KS, Bubnik MG (2015) Evaluating cognitive and motivational accounts of greater reinforcement effects among children with attention-deficit/hyperactivity disorder. Behav Brain Funct 11:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin T, Wang Z, Suh JJ, Hazan R, Cruz J, Li Y, Goldman M, Detre JA, O’Brien CP, Childress AR (2011) Effects of varenicline on smoking cue-triggered neural and craving responses. Arch Gen Psychiatry 68:516–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaub M, Carlson CL (1997) Gender differences in ADHD: a meta-analysis and critical review. J Am Acad Child Adolesc Psychiatry 36:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21

    Article  Google Scholar 

  • Gunther T, Herpertz-Dahlmann B, Konrad K (2010) Sex differences in attentional performance and their modulation by methylphenidate in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 20:179–86

    Article  PubMed  Google Scholar 

  • Hearst E, Jenkins HM (1974) Sign-tracking: The stimulus-reinforcer relation and directed action. Monograph of the Psychonomic Society

  • Kambeitz J, Romanos M, Ettinger U (2014) Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogenomics J 14:77–84

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Cheon KA, Joung YS, Kim JY, Song DH (2015) The relationship between symptomatic and functional changes of Korean children and adolescents with attention-deficit/hyperactivity disorder treated with osmotic-controlled release oral delivery system-methylphenidate. Clin Neuropharmacol 38:30–5

    Article  CAS  PubMed  Google Scholar 

  • Leeman RF, Ralevski E, Limoncelli D, Pittman B, O’Malley SS, Petrakis IL (2014) Relationships between impulsivity and subjective response in an IV ethanol paradigm. Psychopharmacol (Berl) 231:2867–76

    Article  CAS  Google Scholar 

  • Leth-Steensen C, King Elbaz Z, Douglas VI (2000) Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychologica 104:167–190

  • Lloyd DR, Gancarz AM, Ashrafioun L, Kausch MA, Richards JB (2012) Habituation and the reinforcing effectiveness of visual stimuli. Behav Process 91:184–91

    Article  Google Scholar 

  • Lovic V, Saunders BT, Yager LM, Robinson TE (2011) Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behav Brain Res 223:255–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer PJ, Lovic V, Saunders BT, Yager LM, Flagel SB, Morrow JD, Robinson TE (2012) Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PLoS One 7, e38987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton AL, Everitt BJ (2010) The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur J Neurosci 31:2308–19

    Article  PubMed  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci 97:12649–12654

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray JE, Dilleen R, Pelloux Y, Economidou D, Dalley JW, Belin D, Everitt BJ (2013) Increased Impulsivity Retards the Transition to Dorsolateral Striatal Dopamine Control of Cocaine Seeking. Biol Psychiatry 76(1):15–22

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32:34–41

    Article  CAS  PubMed  Google Scholar 

  • Oosterlaan J, Logan GD, Sergeant JA (1998) Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 39:411–25

    Article  CAS  PubMed  Google Scholar 

  • Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE, Solberg Woods LC, Palmer AA (2013) Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 76:250–258

  • Pelham WE Jr, Walker JL, Sturges J, Hoza J (1989) Comparative effects of methylphenidate on ADD girls and ADD boys. J Am Acad Child Adolesc Psychiatry 28:773–776

    Article  PubMed  Google Scholar 

  • Penades R, Catalan R, Rubia K, Andres S, Salamero M, Gasto C (2007) Impaired response inhibition in obsessive compulsive disorder. Eur Psychiatry 22:404–10

    Article  CAS  PubMed  Google Scholar 

  • Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacol (Berl) 200:1–26

    Article  CAS  Google Scholar 

  • Pitchers KK, Flagel SB, O’Donnell EG, Solberg Woods LC, Sarter M, Robinson TE (2015) Individual variation in the propensity to attribute incentive salience to a food cue: Influence of sex. Behav Brain Res 278:462–9

    Article  PubMed  Google Scholar 

  • Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–74

  • Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P Jr, Sirvio J (1996) Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem 66:198–211

    Article  CAS  PubMed  Google Scholar 

  • Richards JB, Lloyd DR, Kuehlewind B, Militello L, Paredez M, Solberg Woods L, Palmer AA (2013) Strong genetic influences on measures of behavioral-regulation among inbred rat strains. Genes Brain Behav 12:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins T (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  CAS  PubMed  Google Scholar 

  • Robinson ES (2012) Blockade of noradrenaline re-uptake sites improves accuracy and impulse control in rats performing a five-choice serial reaction time tasks. Psychopharmacol (Berl) 219:303–12

    Article  CAS  Google Scholar 

  • Robinson TE, Flagel SB (2009) Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol Psychiatry 65:869–73

    Article  PubMed  Google Scholar 

  • Robinson TE, Yager LM, Cogan ES, Saunders BT (2014) On the motivational properties of reward cues: individual differences. Neuropharmacology 76:450–459

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ, Anselme P, Suchomel K, Berridge KC (2015) Amphetamine-Induced Sensitization and Reward Uncertainty Similarly Enhance Incentive Salience for Conditioned Cues. Behav Neurosci 129:502–511

  • Roeding RL, Perna MK, Cummins ED, Peterson DJ, Palmatier MI, Brown RW (2014) Sex differences in adolescent methylphenidate sensitization: effects on glial cell-derived neurotrophic factor and brain-derived neurotrophic factor. Behav Brain Res 273:139–43

    Article  CAS  PubMed  Google Scholar 

  • Rosch KS, Fosco WD, Pelham WE Jr, Waxmonsky JG, Bubnik MG, Hawk LW Jr (2016) Reinforcement and stimulant medication ameliorate deficient response inhibition in children with attention-deficit/hyperactivity disorder. J Abnorm Child Psychol 44:309–21

    Article  PubMed  Google Scholar 

  • Sabol KE, Richards JB, Broom SL, Roach JT, Hausknecht K (2003) Effects of stimulus salience and methamphetamine on choice reaction time in the rat: central tendency versus distribution skew. Behav Pharmacol 14:489–500

    Article  CAS  PubMed  Google Scholar 

  • Saunders BT, Robinson TE (2010) A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biol Psychiatry 67:730–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders BT, Yager LM, Robinson TE (2013) Cue-evoked cocaine “craving”: role of dopamine in the accumbens core. J Neurosci 33:13989–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semrud-Clikeman M, Walkowiak J, Wilkinson A, Butcher B (2010) Executive functioning in children with Asperger syndrome, ADHD-combined type, ADHD-predominately inattentive type, and controls. J Autism Dev Disord 40:1017–27

    Article  PubMed  Google Scholar 

  • Sharp WS, Walter JM, Marsh WL, Ritchie GF, Hamburger SD, Castellanos FX (1999) ADHD in girls: clinical comparability of a research sample. J Am Acad Child Adolesc Psychiatry 38:40–47

    Article  CAS  PubMed  Google Scholar 

  • Solberg Woods LC, Holl K, Tschannen M, Valdar W (2010a) Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol Genomics 41:102–8

    Article  PubMed  Google Scholar 

  • Solberg Woods LC, Stelloh C, Regner KR, Schwabe T, Eisenhauer J, Garrett MR (2010b) Heterogeneous stock rats: a new model to study the genetics of renal phenotypes. Am J Physiol Renal Physiol 298:F1484–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Solberg Woods LC, Holl KL, Oreper D, Xie Y, Tsaih SW, Valdar W (2012) Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats. Physiol Genomics 44:1013–26

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ, Coghill D, Markowitz JS, Swanson JM, Vandenberghe M, Hatch SJ (2007) Sex differences in the response of children with ADHD to once-daily formulations of methylphenidate. J Am Acad Child Adolesc Psychiatry 46:701–10

    Article  PubMed  Google Scholar 

  • Spencer SV, Hawk LW Jr, Richards JB, Shiels K, Pelham WE Jr, Waxmonsky JG (2009) Stimulant treatment reduces lapses in attention among children with ADHD: the effects of methylphenidate on intra-individual response time distributions. J Abnorm Child Psychol 37:805–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein MA, Waldman I, Newcorn J, Bishop J, Kittles R, Cook EH Jr (2014) Dopamine transporter genotype and stimulant dose–response in youth with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 24:238–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strand MT, Hawk LW Jr, Bubnik M, Shiels K, Pelham WE Jr, Waxmonsky JG (2012) Improving working memory in children with attention-deficit/hyperactivity disorder: the separate and combined effects of incentives and stimulant medication. J Abnorm Child Psychol 40:1193–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavares H, Gentil V (2007) Pathological gambling and obsessive-compulsive disorder: towards a spectrum of disorders of volition. Rev Bras Psiquiatr 29:107–17

    PubMed  Google Scholar 

  • Tomie A, Lincks M, Nadarajah SD, Pohorecky LA, Yu L (2012) Pairings of lever and food induce Pavlovian conditioned approach of sign-tracking and goal-tracking in C57BL/6 mice. Behav Brain Res 226:571–578

    Article  PubMed  Google Scholar 

  • Torres-Reveron A, Dow-Edwards DL (2005) Repeated administration of methylphenidate in young, adolescent, and mature rats affects the response to cocaine later in adulthood. Psychopharmacol (Berl) 181:38–47

    Article  CAS  Google Scholar 

  • van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacol (Berl) 187:73–85

    Article  CAS  Google Scholar 

  • Weafer J, de Wit H (2013) Inattention, impulsive action, and subjective response to d-amphetamine. Drug Alcohol Depend 133:127–133

  • Williamson D, Johnston C (2015) Gender differences in adults with attention-deficit/hyperactivity disorder: a narrative review. Clin Psychol Rev 40:15–27

    Article  PubMed  Google Scholar 

  • Yager LM, Robinson TE (2010) Cue-induced reinstatement of food seeking in rats that differ in their propensity to attribute incentive salience to food cues. Behav Brain Res 214:30–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98:1982–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was support by a grant from the National Institute on Drug Abuse (P50DA037844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. King.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, C.P., Palmer, A.A., Woods, L.C.S. et al. Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats. Psychopharmacology 233, 2593–2605 (2016). https://doi.org/10.1007/s00213-016-4306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4306-x

Keywords

Navigation