Skip to main content

Motivational Processes Underlying Substance Abuse Disorder

  • Chapter
  • First Online:
Behavioral Neuroscience of Motivation

Abstract

Drug addiction is a syndrome of dysregulated motivation, evidenced by intense drug craving and compulsive drug-seeking behavior. In the search for common neurobiological substrates of addiction to different classes of drugs, behavioral neuroscientists have attempted to determine the neural basis for a number of motivational concepts and describe how they are changed by repeated drug use. Here, we describe these concepts and summarize previous work describing three major neural systems that play distinct roles in different conceptual aspects of motivation: (1) a nigrostriatal system that is involved in two forms of instrumental learning, (2) a ventral striatal system that is involved in Pavlovian incentive motivation and negative reinforcement, and (3) frontal cortical areas that regulate decision making and motivational processes. Within striatal systems, drug addiction can involve a transition from goal-oriented, incentive processes to automatic, habit-based responding. In the cortex, weak inhibitory control is a predisposing factor to, as well as a consequence of, repeated drug intake. However, these transitions are not absolute, and addiction can occur without a transition to habit-based responding, occurring as a result of the overvaluation of drug outcomes and hypersensitivity to incentive properties of drug-associated cues. Finally, we point out that addiction is not monolithic and can depend not only on individual differences between addicts, but also on the neurochemical action of specific drug classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that “substance use disorder” in humans is diagnosed on a continuum from mild to severe based on 11 behavioral criteria laid out in the DSM V, which does not mention “addiction.” This choice is in part intended to help identify and treat overuse of drugs (e.g., alcohol and nicotine which can cause or worsen a number of other conditions) and also to avoid social stigmas associated with the term “addiction,” which may result from the lack of clear biological markers that identify the addicted state. We avoid this symptomatological approach to describing addiction in favor of focusing on the core motivational processes involved in drug-taking, in a manner analogous to the National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative (Cuthbert 2014; Litten et al. 2015; NIMH 2015).

  2. 2.

    These models also disagree regarding the relationship between dopamine and hedonia, whereas an altered hedonic set point is proposed to be mediated in part by changes in dopamine; the “liking” reaction to rewards is dopamine independent (Berridge and Robinson 1998; Koob and Le Moal 2008). This discrepancy may lie in the definition of hedonia, which may be referred to generally as affect or pleasure, or operationalized into a specific subjective experience or behavioral measure.

  3. 3.

    Note that this is a deviation from McEwen’s definition of allostasis , which states that allostasis consists of the adaptive physiological changes that are evoked in order to return a system to homeostasis. Thus, this Koob’s allostatic state is better referred to as allostatic load, which McEwen defines as the long-term cost of allostasis that accumulates over time (McEwen 1998).

  4. 4.

    Note that neuroadaptations accompanying psychomotor sensitization are thought to overlap with the neuroadaptations underlying the incentive sensitization that drives drug-seeking and drug-taking behavior. However, psychomotor sensitization and incentive sensitization are neurobiologically dissociable processes that mediate different aspects of behavior. Thus, the presence of psychomotor sensitization is indicative of changes underlying incentive sensitization, but they are not one and the same.

  5. 5.

    The notation for action–outcome (A-O) and stimulus–response (S-R) responding can be confusing because the drug-seeking action is denoted as either A or R in each of these conceptualizations. Indeed, notations such as \( \stackrel{a}{\longrightarrow}O \) (action–outcome), \( S\stackrel{a}{\longrightarrow}O \) (action–outcome in the presence of environmental stimuli), and \( S\stackrel{a}{\longrightarrow} \) (stimulus–response) are sometimes used to avoid this confusion (Redish et al. 2008). The notation for the activation of a conditioned motivational state by Pavlovian cues is \( \left[ {SO} \right]\stackrel{a}{\longrightarrow} \), where O is the conditioned motivational or affective state elicited by drug stimuli S and a is the behavioral response elicited by this state. However, we avoid this notation because O has quite different meanings depending on whether it is the outcome of an action (as in A-O) or the motivational state elicited by a Pavlovian stimulus (as in is \( \left[ {SO} \right]\stackrel{a}{\longrightarrow} \)).

References

  • Ahmed SH (2008) The origin of addictions by means of unnatural decision. Behav Brain Sci 31(4):437–438

    Article  Google Scholar 

  • Ahmed SH (2010) Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci Biobehav Rev 35(2):172–184

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5(7):625–626

    CAS  PubMed  Google Scholar 

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (ed) (2013) Diagnostic and statistical manual of mental disorders: DSM-5

    Google Scholar 

  • Anagnostaras SG, Robinson TE (1996) Sensitization to the psychomotor activating stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110(6):1397–1414

    Article  CAS  PubMed  Google Scholar 

  • Ashton H (1991) Protracted withdrawal syndromes from benzodiazepines. J Subst Abuse Treat 8(1–2):19–28

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498

    Article  CAS  PubMed  Google Scholar 

  • Babbini M, Davis WM (1972) Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol 46(2):213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badiani A (2013) Substance-specific environmental influences on drug use and drug preference in animals and humans. Curr Opin Neurobiol 23(4):588–596

    Article  CAS  PubMed  Google Scholar 

  • Bailey CP, Manley SJ, Watson WP, Wonnacott S, Molleman A, Little HJ (1998) Chronic ethanol administration alters activity in ventral tegmental area neurons after cessation of withdrawal hyperexcitability. Brain Res 803(1–2):144–152

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 86(5):717–730

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Morris RW, Leung BK (2014) Thalamocortical integration of instrumental learning and performance and their disintegration in addiction. Brain Res. http://dx.doi.org/10.1016/j.brainres.2014.12.023

  • Barak S, Wang J, Ahmadiantehrani S, Ben Hamida S, Kells AP, Forsayeth J, Bankiewicz KS, Ron D (2014) Glial cell line-derived neurotrophic factor (GDNF) is an endogenous protector in the mesolimbic system against excessive alcohol consumption and relapse. Addict Biol 20:629

    Google Scholar 

  • Bardo MT, Donohew RL, Harrington NG (1996) Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 77(1–2):23–43

    Article  CAS  PubMed  Google Scholar 

  • Basso AM, Spina M, Koob GF, Rivier J, Vale W (1999) Corticotropin-releasing factor antagonist attenuates the ‘anxiogenic-like’ effect in the defensive burying paradigm but not in the elevated plus-maze following chronic cocaine in rats. Psychopharmacology 145(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Bechara A (2001) Neurobiology of decision-making: risk and reward. Semin Clin Neuropsychiatry 6(3):205–216

    Article  CAS  PubMed  Google Scholar 

  • Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8(11):1458–1463

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Belin-Rauscent A, Murray JE, Everitt BJ (2013) Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 23(4):564–572

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199(1):89–102

    Article  PubMed  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105(4):849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendse HW, Graaf YG-D, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316(3):314–347

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res Brain Res Rev 28(3):309–369

    Google Scholar 

  • Berridge KC, Kringelbach ML (2015) Pleasure systems in the Brain. Neuron 86(3):646–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513

    Article  CAS  PubMed  Google Scholar 

  • Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchalian KM (2012) Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: emerging evidence. Pharmacol Ther 134(3):287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossert JM, Marchant NJ, Calu DJ, Shaham Y (2013) The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 229(3):453–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23(11):1848–1852

    Article  CAS  PubMed  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338(2):255–278

    Article  CAS  PubMed  Google Scholar 

  • Bucholz KK (1999) Nosology and epidemiology of addictive disorders and their comorbidity. Psychiatr Clin N Am 22(2):221–240

    Article  CAS  Google Scholar 

  • Caggiula AR, Donny EC, Palmatier MI, Liu X, Chaudhri N, Sved AF (2009) The role of nicotine in smoking: a dual-reinforcement model. Nebr Symp Motiv 55:91–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Celentano M, Caprioli D, Dipasquale P, Cardillo V, Nencini P, Gaetani S, Badiani A (2009) Drug context differently regulates cocaine versus heroin self-administration and cocaine-versus heroin-induced Fos mRNA expression in the rat. Psychopharmacology 204(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Chartoff E, Sawyer A, Rachlin A, Potter D, Pliakas A, Carlezon WA (2012) Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology 62(1):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, O’Brien CP (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 137:73–95

    CAS  PubMed  Google Scholar 

  • Compton WM, Thomas YF, Stinson FS, Grant BF (2007) Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry 64(5):566–576

    Article  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2003) Instrumental and Pavlovian incentive processes have dissociable effects on components of a heterogeneous instrumental chain. J Exp Psychol Anim Behav Process 29(2):99–106

    Article  PubMed  Google Scholar 

  • Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72(5):389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93(4):1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Coutureau E, Killcross S (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146(1–2):167–174

    Article  PubMed  Google Scholar 

  • Crombag HS, Badiani A, Chan J, Dell’Orco J, Dineen SP, Robinson TE (2001) The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology 24(6):680–690

    Article  CAS  PubMed  Google Scholar 

  • Crombag HS, Badiani A, Maren S, Robinson TE (2000) The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behav Brain Res 116(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert BN (2014) The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13(1):28–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based influences on humans’ choices and striatal prediction errors. Neuron 69(6):1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711

    Article  CAS  PubMed  Google Scholar 

  • de Wit H, Richards JB (2004) Dual determinants of drug use in humans: reward and impulsivity. Nebr Sym Motiv 50:19–55

    Google Scholar 

  • de Wit S, Corlett PR, Aitken MR, Dickinson A, Fletcher PC (2009) Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci 29(36):11330–11338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Wit S, Watson P, Harsay HA, Cohen MX, van de Vijver I, Ridderinkhof KR (2012) Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J Neurosci 32(35):12066–12075

    Article  PubMed  CAS  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11(8):2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Loddo P, Tanda G (1999) Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry 46(12):1624–1633

    Article  PubMed  Google Scholar 

  • Diana M (2011) The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psychiatry 2:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci 90(17):7966–7969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson A, Wood N, Smith JW (2002) Alcohol seeking by rats: action or habit? Q J Exp Psychol Sect B 55(4):331

    Article  Google Scholar 

  • DiLeone RJ, Taylor JR, Picciotto MR (2012) The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci 15(10):1330–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan RJ, Dayan P (2013) Goals and habits in the brain. Neuron 80(2):312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll BB, Simon DA, Daw ND (2012) The ubiquity of model-based reinforcement learning. Curr Opin Neurobiol 22(6):1075–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duka T, Townshend JM (2004) The priming effect of alcohol pre-load on attentional bias to alcohol-related stimuli. Psychopharmacology 176(3–4):353–361

    Article  CAS  PubMed  Google Scholar 

  • Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat: III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87(5):876–883

    Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393(6680):76–79

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ (2014) Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction. Eur J Neurosci 40:2163

    Google Scholar 

  • Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985:233–250

    Article  PubMed  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36(2–3):129–138

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2015) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:8.1–8.28

    Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22(9):3312–3320

    CAS  PubMed  Google Scholar 

  • Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25(11):2771–2780

    Article  CAS  PubMed  Google Scholar 

  • Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, Robinson TE (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58(9):751–759

    Article  CAS  PubMed  Google Scholar 

  • Ferrario CR, Robinson TE (2007) Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. Eur Neuropsychopharmacol 17(5):352–357

    Article  CAS  PubMed  Google Scholar 

  • Field M, Mogg K, Bradley BP (2005) Craving and cognitive biases for alcohol cues in social drinkers. Alcohol Alcohol 40(6):504–510

    Article  PubMed  Google Scholar 

  • Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    Article  CAS  PubMed  Google Scholar 

  • Finn DA, Snelling C, Fretwell AM, Tanchuck MA, Underwood L, Cole M, Crabbe JC, Roberts AJ (2007) Increased drinking during withdrawal from intermittent ethanol exposure is blocked by the CRF receptor antagonist D-Phe-CRF(12-41). Alcohol Clin Exp Res 31(6):939–949

    Article  CAS  PubMed  Google Scholar 

  • Fischman MW (1989) Relationship between self-reported drug effects and their reinforcing effects: studies with stimulant drugs. NIDA Res Monogr 92:211–230

    CAS  PubMed  Google Scholar 

  • Fischman MW, Foltin RW (1992) Self-administration of cocaine by humans: a laboratory perspective. In: Bock GR, Whelan J (eds) Cocaine: scientific and social dimensions, CIBA Foundation Symposium, vol 166, pp 165–180

    Google Scholar 

  • Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56(Suppl 1):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469(7328):53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagel SB, Watson SJ, Akil H, Robinson TE (2008) Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav Brain Res 186(1):48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox HC, Talih M, Malison R, Anderson GM, Kreek MJ, Sinha R (2005) Frequency of recent cocaine and alcohol use affects drug craving and associated responses to stress and drug-related cues. Psychoneuroendocrinology 30(9):880–891

    Article  CAS  PubMed  Google Scholar 

  • Gass JC, Motschman CA, Tiffany ST (2014) The relationship between craving and tobacco use behavior in laboratory studies: a meta-analysis. Psychol Addict Behav 28(4):1162–1176

    Article  PubMed  Google Scholar 

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43(2):107–113

    Article  CAS  PubMed  Google Scholar 

  • George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O’Dell LE, Richardson HN, Koob GF (2007) CRF–CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci 104(43):17198–17203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George O, Le Moal M, Koob GF (2012) Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav 106(1):58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103(2):121–146

    Article  CAS  PubMed  Google Scholar 

  • Greenwell TN, Funk CK, Cottone P, Richardson HN, Chen SA, Rice KC, Zorrilla EP, Koob GF (2009) Corticotropin-releasing factor-1 receptor antagonists decrease heroin self-administration in long-but not short-access rats. Addict Biol 14(2):130–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26(4):317–330

    Article  PubMed  Google Scholar 

  • Harmer CJ, Phillips GD (1998) Enhanced appetitive conditioning following repeated pretreatment with d-amphetamine. Behav Pharmacol 9(4):299–308

    Article  CAS  PubMed  Google Scholar 

  • Hart AS, Rutledge RB, Glimcher PW, Phillips PE (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J Neurosci 34(3):698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth L (2012) Goal-directed and transfer-cue-elicited drug-seeking are dissociated by pharmacotherapy: Evidence for independent additive controllers. J Exp Psychol Anim Behav Process 38(3):266–278

    Article  PubMed  Google Scholar 

  • Hogarth L, Balleine BW, Corbit LH, Killcross S (2013) Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Ann N Y Acad Sci 1282:12–24

    Article  CAS  PubMed  Google Scholar 

  • Homberg JR, Karel P, Verheij MM (2014) Individual differences in cocaine addiction: maladaptive behavioural traits. Addict Biol 19(4):517–528

    Article  PubMed  Google Scholar 

  • Hone-Blanchet A, Fecteau S (2014) Overlap of food addiction and substance use disorders definitions: analysis of animal and human studies. Neuropharmacology 85:81–90

    Article  CAS  PubMed  Google Scholar 

  • Horger BA, Shelton K, Schenk S (1990) Preexposure sensitizes rats to the rewarding effects of cocaine. Pharmacol Biochem Behav 37(4):707–711

    Article  CAS  PubMed  Google Scholar 

  • Hughes JR (2007) Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res 9(3):315–327

    Article  PubMed  Google Scholar 

  • Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90(4):385–417

    Article  PubMed  Google Scholar 

  • Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A (2001) The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci 4(9):943–947

    Article  CAS  PubMed  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20(19):7489–7495

    CAS  PubMed  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22(14):6247–6253

    CAS  PubMed  Google Scholar 

  • Jaffe JH (1975) Drug addiction and drug abuse. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics. MacMillan, New York, pp 284–324

    Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146(4):373–390

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, van der Meer MA, Redish AD (2007) Integrating hippocampus and striatum in decision-making. Curr Opin Neurobiol 17(6):692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce EM, Iversen SD (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci Lett 14(2–3):207–212

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Nakamura M (1999) Neural systems for behavioral activation and reward. Curr Opin Neurobiol 9(2):223–227

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413

    Article  PubMed  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5):773–795

    Article  CAS  PubMed  Google Scholar 

  • Kempadoo KA, Tourino C, Cho SL, Magnani F, Leinninger GM, Stuber GD, Zhang F, Myers MG, Deisseroth K, de Lecea L, Bonci A (2013) Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci 33(18):7618–7626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennett J, Matthews S, Snoek A (2013) Pleasure and addiction. Front Syst Neurosci 4:117

    Google Scholar 

  • Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26(22):5894–5900

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31(6):1203–1211

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Polis I, Koob GF, Markou A (2003) Low dose cocaine self-administration transiently increases but high dose cocaine persistently decreases brain reward function in rats. Eur J Neurosci 17(1):191–195

    Article  PubMed  Google Scholar 

  • Khantzian EJ (1997) The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harvard Rev Psychiatry 4(5):231–244

    Article  CAS  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408

    Article  PubMed  Google Scholar 

  • Kita T, Okamoto M, Nakashima T (1992) Nicotine-induced sensitization to ambulatory stimulant effect produced by daily administration into the ventral tegmental area and the nucleus accumbens in rats. Life Sci 50(8):583–590

    Article  CAS  PubMed  Google Scholar 

  • Klitenick MA, DeWitte P, Kalivas PW (1992) Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J Neurosci 12(7):2623–2632

    CAS  PubMed  Google Scholar 

  • Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27(2):232–243

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2013) Addiction is a reward deficit and stress surfeit disorder. Front Psychiatry 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr, George O (2014) Addiction as a stress surfeit disorder. Neuropharmacology 76 Pt B:370–382

    Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    Article  PubMed  Google Scholar 

  • Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9(3):482–497

    Article  CAS  PubMed  Google Scholar 

  • Lamb RJ, Preston KL, Schindler CW, Meisch RA, Davis F, Katz JL, Henningfield JE, Goldberg SR (1991) The reinforcing and subjective effects of morphine in post-addicts: a dose-response study. J Pharmacol Exp Ther 259(3):1165–1173

    CAS  PubMed  Google Scholar 

  • Lesscher HM, Vanderschuren LJ (2012) Compulsive drug use and its neural substrates. Rev Neurosci 23(5–6):731–745

    PubMed  Google Scholar 

  • Lessov CN, Palmer AA, Quick EA, Phillips TJ (2001) Voluntary ethanol drinking in C57BL/6 J and DBA/2 J mice before and after sensitization to the locomotor stimulant effects of ethanol. Psychopharmacology 155(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21(8):2799–2807

    CAS  PubMed  Google Scholar 

  • Litten RZ, Ryan ML, Falk DE, Reilly M, Fertig JB, Koob GF (2015) Heterogeneity of alcohol use disorder: understanding mechanisms to advance personalized treatment. Alcohol Clin Exp Res 39(4):579–584

    Article  PubMed  Google Scholar 

  • Littleton J (1998) Neurochemical mechanisms underlying alcohol withdrawal. Alcohol Health Res World 22(1):13–24

    CAS  PubMed  Google Scholar 

  • Logrip ML, Koob GF, Zorrilla EP (2011) Role of corticotropin-releasing factor in drug addiction: potential for pharmacological intervention. CNS Drugs 25(4):271–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107(1–2):9–19

    Article  CAS  PubMed  Google Scholar 

  • Loweth JA, Tseng KY, Wolf ME (2014) Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 76 Pt B:287–300

    Google Scholar 

  • Lubman DI, Yucel M, Pantelis C (2004) Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction (Abingdon, England) 99 (12):1491–1502

    Google Scholar 

  • Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, Lan Y, Balcita-Pedicino JJ, Wolf ME, Sesack SR, Shaham Y, Schluter OM, Huang YH, Dong Y (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83(6):1453–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacAskill AF, Cassel JM, Carter AG (2014) Cocaine exposure reorganizes cell type-and input-specific connectivity in the nucleus accumbens. Nat Neurosci 17(9):1198–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahler SV, Berridge KC (2012) What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology 221(3):407–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure SM, Bickel WK (2014) A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training. Ann N Y Acad Sci 1327:62–78

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen BS (1998) Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann NY Acad Sci 840(1):33–44

    Google Scholar 

  • Mendrek A, Blaha CD, Phillips AG (1998) Pre-exposure of rats to amphetamine sensitizes self-administration of this drug under a progressive ratio schedule. Psychopharmacology 135(4):416–422

    Article  CAS  PubMed  Google Scholar 

  • Meyer PJ, Lovic V, Saunders BT, Yager LM, Flagel SB, Morrow JD, Robinson TE (2012a) Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PLoS ONE 7(6):e38987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer PJ, Ma ST, Robinson TE (2012b) A cocaine cue is more preferred and evokes more frequency-modulated 50-kHz ultrasonic vocalizations in rats prone to attribute incentive salience to a food cue. Psychopharmacology 219(4):999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer PJ, Meshul CK, Phillips TJ (2009) Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine. Genes Brain Behav 8(3):346–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles FJ, Everitt BJ, Dickinson A (2003) Oral cocaine seeking by rats: action or habit? Behav Neurosci 117(5):927–938

    Article  PubMed  Google Scholar 

  • Miliaressis E, Rompre PP, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Moeller FG, Dougherty DM (2002) Impulsivity and substance abuse: what is the connection? Addict Disord Treat 1(1):3–10

    Article  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97

    Article  CAS  PubMed  Google Scholar 

  • Morgan D, Roberts DC (2004) Sensitization to the reinforcing effects of cocaine following binge-abstinent self-administration. Neurosci Biobehav Rev 27(8):803–812

    Article  CAS  PubMed  Google Scholar 

  • Murray JE, Belin D, Everitt BJ (2012) Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37(11):2456–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naude J, Dongelmans M, Faure P (2014) Nicotinic alteration of decision-making. Neuropharmacology 96:244

    Google Scholar 

  • Nestby P, Vanderschuren LJ, De Vries TJ, Hogenboom F, Wardeh G, Mulder AH, Schoffelmeer AN (1997) Ethanol, like psychostimulants and morphine, causes long-lasting hyperreactivity of dopamine and acetylcholine neurons of rat nucleus accumbens: possible role in behavioural sensitization. Psychopharmacology 133(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2(2):119–128

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8(11):1445–1449

    Article  CAS  PubMed  Google Scholar 

  • NIMH (2015) Research domain criteria (RDoC). http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml

  • Nimitvilai S, Arora DS, McElvain MA, Brodie MS (2012) Ethanol blocks the reversal of prolonged dopamine inhibition of dopaminergic neurons of the ventral tegmental area. Alcohol Clin Exp Res 36(11):1913–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olds J (1962) Hypothalamic substrates of reward. Physiol Rev 42:554–604

    CAS  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007a) The contribution of orbitofrontal cortex to action selection. Ann N Y Acad Sci 1121:174–192

    Article  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007b) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27(18):4819–4825

    Article  CAS  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2008) On habits and addiction: an associative analysis of compulsive drug seeking. Drug Discov Today Dis Models 5(4):235–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulson PE, Camp DM, Robinson TE (1991) The time coures of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology 200(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Deroche-Gamonet V (2013) A multistep general theory of transition to addiction. Psychopharmacology 229(3):387–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce RC, Kalivas PW (1997) Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J Neurosci 17(9):3254–3261

    CAS  PubMed  Google Scholar 

  • Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24(14):3554–3562

    Article  CAS  PubMed  Google Scholar 

  • Post RM, Lockfeld A, Squillace KM, Contel NR (1981) Drug-environment interaction: context dependency of cocaine-induced behavioral sensitization. Life Sci 28(7):755–760

    Article  CAS  PubMed  Google Scholar 

  • Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83(2):489–499

    Article  CAS  PubMed  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306(5703):1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci 31(4):415–437 (discussion 437–487)

    Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398(6728):567–570

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396(2):157–198

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18(3):247–291

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–117

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Yager LM, Cogan ES, Saunders BT (2014) On the motivational properties of reward cues: Individual differences. Neuropharmacology 76(Part B (0)):450–459

    Article  CAS  PubMed  Google Scholar 

  • Rothwell PE, Thomas MJ, Gewirtz JC (2012) Protracted manifestations of acute dependence after a single morphine exposure. Psychopharmacology 219(4):991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saddoris MP, Cacciapaglia F, Wightman RM, Carelli RM (2015) Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J Neurosci 35(33):11572–11582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakagami M, Pan X, Uttl B (2006) Behavioral inhibition and prefrontal cortex in decision-making. Neural Networks Official J Int Neural Network Soc 19(8):1255–1265

    Article  Google Scholar 

  • Satel SL, Kosten TR, Schuckit MA, Fischman MW (1993) Should protracted withdrawal from drugs be included in DSM-IV? Am J Psychiatry 150(5):695–704

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Anderson SM, Famous KR, Kumaresan V, Pierce RC (2005) Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 526(1–3):65–76

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Pierce RC (2010) Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 1187:35–75

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29(2):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Schuster CR, Thompson T (1969) Self administration of and behavioral dependence on drugs. Annu Rev Pharmacol 9:483–502

    Article  CAS  PubMed  Google Scholar 

  • Segal DS (1975) Behavioral and neurochemical correlates of repeated d-amphetamine administration. Adv Biochem Psychopharmacol 13:247–262

    CAS  PubMed  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35(1):27–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42

    Article  CAS  PubMed  Google Scholar 

  • Shen RY (2003) Ethanol withdrawal reduces the number of spontaneously active ventral tegmental area dopamine neurons in conscious animals. J Pharmacol Exp Ther 307(2):566–572

    Article  CAS  PubMed  Google Scholar 

  • Shen RY, Choong KC, Thompson AC (2007) Long-term reduction in ventral tegmental area dopamine neuron population activity following repeated stimulant or ethanol treatment. Biol Psychiatry 61(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32(10):1735–1743

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiflett MW, Balleine BW (2011) Molecular substrates of action control in cortico-striatal circuits. Prog Neurobiol 95(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B (2013) Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 37:1779

    Google Scholar 

  • Skinner MD, Aubin HJ (2010) Craving’s place in addiction theory: contributions of the major models. Neurosci Biobehav Rev 34(4):606–623

    Article  PubMed  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81(2):119–145

    Article  CAS  PubMed  Google Scholar 

  • Soto CBD, O’Donnell WE, Allred LJ, Lopes CE (1985) Symptomatology in alcoholics at various stages of abstinence. Alcohol Clin Exp Res 9(6):505–512

    Article  PubMed  Google Scholar 

  • Specio SE, Wee S, O’Dell LE, Boutrel B, Zorrilla EP, Koob GF (2008) CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology 196(3):473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev 41(2–3):203–228

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (1992) Conditioned stimulus control of the expression of sensitization of the behavioral activating effects of opiate and stimulant drugs. In: Gormezano I, Wasserman EA (eds) Learning and memory: the behavioral and biological substrates. Erlbaum, Hillsdale, NJ, pp 917–923

    Google Scholar 

  • Terelli E, Terry P (1999) Amphetamine induced conditioned activity and sensitization: the role of habituation to the test context and the involvement of Pavlovian processes. Behav Pharmacol 9:409–419

    Article  Google Scholar 

  • Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychol Rev 97(2):147–168

    Article  CAS  PubMed  Google Scholar 

  • Tiffany ST (1999) Cognitive concepts of craving. Alcohol Res Health 23(3):215–224

    CAS  PubMed  Google Scholar 

  • Torregrossa MM, Kalivas PW (2008) Neurotensin in the ventral pallidum increases extracellular gamma-aminobutyric acid and differentially affects cue- and cocaine-primed reinstatement. J Pharmacol Exp Ther 325(2):556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchan J, Lason W, Budziszewska B, Przewlocka B (1997) Effects of single and repeated morphine administration on the prodynorphin, proenkephalin and dopamine D2 receptor gene expression in the mouse brain. Neuropeptides 31(1):24–28

    Article  CAS  PubMed  Google Scholar 

  • Uslaner JM, Acerbo MJ, Jones SA, Robinson TE (2006) The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav Brain Res 169(2):320–324

    Article  CAS  PubMed  Google Scholar 

  • van Huijstee AN, Mansvelder HD (2014) Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front Cell Neurosci 8:466

    PubMed  PubMed Central  Google Scholar 

  • Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25(38):8665–8670

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151(2–3):99–120

    Article  CAS  PubMed  Google Scholar 

  • Veilleux JC, Skinner KD (2015) Smoking, food, and alcohol cues on subsequent behavior: a qualitative systematic review. Clin Psychol Rev 36:13–27

    Article  PubMed  Google Scholar 

  • Verdejo-Garcia A, Bechara A, Recknor EC, Perez-Garcia M (2007) Negative emotion-driven impulsivity predicts substance dependence problems. Drug Alcohol Depend 91(2–3):213–219

    Article  PubMed  Google Scholar 

  • Verdejo-Garcia A, Rivas-Perez C, Lopez-Torrecillas F, Perez-Garcia M (2006) Differential impact of severity of drug use on frontal behavioral symptoms. Addict Behav 31(8):1373–1382

    Article  PubMed  Google Scholar 

  • Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27(8):827–839

    Article  CAS  PubMed  Google Scholar 

  • Vezina P, Leyton M (2009) Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56(Suppl 1):160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111(10):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R (2012) Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci 11:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wassum KM, Cely IC, Balleine BW, Maidment NT (2011) Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. J Neurosci 31(5):1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks JR (1962) Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138(3537):143–144

    Article  CAS  PubMed  Google Scholar 

  • White AM, Ghia AJ, Levin ED, Swartzwelder HS (2000) Binge pattern ethanol exposure in adolescent and adult rats: differential impact on subsequent responsiveness to ethanol. Alcohol Clin Exp Res 24(8):1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Wiers RW, Bartholow BD, van den Wildenberg E, Thush C, Engels RC, Sher KJ, Grenard J, Ames SL, Stacy AW (2007) Automatic and controlled processes and the development of addictive behaviors in adolescents: a review and a model. Pharmacol Biochem Behav 86(2):263–283

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I, Burgeno LM, Everitt BJ, Phillips PE (2012) Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA 109(50):20703–20708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24(20):4718–4722

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35(1–2):227–263

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1988) The neurobiology of craving: Implications for the understanding and treatment of addiction. J Abnorm Psychol 97(2):118–132

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Koob GF (2014) The development and maintenance of drug addiction. Neuropsychopharmacology 39(2):254–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Witteman J, Post H, Tarvainen M, de Bruijn A, Perna ES, Ramaekers JG, Wiers RW (2015) Cue reactivity and its relation to craving and relapse in alcohol dependence: a combined laboratory and field study. Psychopharmacology (Berl) 232(20):3685–3696

    Google Scholar 

  • Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54(6):679–720

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interventions 2:146–157

    Article  CAS  Google Scholar 

  • Wolf ME (2003) LTP may trigger addiction. Mol Interventions 3(5):248–252

    Article  CAS  Google Scholar 

  • Wolf ME, Ferrario CR (2010) AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 35(2):185–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolverton WL, Cervo L, Johanson CE (1984) Effects of repeated methamphetamine administration on methamphetamine self-administration in rhesus monkeys. Pharmacol Biochem Behav 21:737–741

    Article  CAS  PubMed  Google Scholar 

  • Yager LM, Robinson TE (2013) A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology 226(2):217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeomans JS (1989) Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons. Neurosci Biobehav Rev 13(2–3):91–98

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166(2):189–196

    Article  PubMed  Google Scholar 

  • Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci Official J Soc Neurosci 30(46):15457–15463

    Article  CAS  Google Scholar 

  • Ziauddeen H, Fletcher PC (2013) Is food addiction a valid and useful concept? Obes Rev 14(1):19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank MEJ Newman for making the collaboration network depicted in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, P.J., King, C.P., Ferrario, C.R. (2015). Motivational Processes Underlying Substance Abuse Disorder. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_391

Download citation

Publish with us

Policies and ethics